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Abstract

It is shown that some gross features of the distribution of the mean temperature relative to the
mean height on the normal maps for January can be computed from the vertically integrated
linearized vorticity equation, if the effects of surface friction and mountains are included in the
equation for the stationary case. By a mathematical analysis supplemented by certain numerical
experiments it is shown that it is necessary to assume a meridional scale parameter corresponding
to less than 9o degrees of latitude in order to obtain the correct phase-lag. An empirical deter-
mination of the meridional wave-length was carried out using 500 mb data for a single month
(January 1959).

Section 6 contains some comments on the assumptions made in this study. It is especially
pointed out that the effect of horizontal advection of vorticity and the effects of the lower
boundary condition (friction and topography) cannot be neglected in comparison with the beta~
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effect in studies of stationary motion on the planetary scale.

1. Introduction

The main problem in the present paper is
the adjustment between the temperature and
the height field in planetary waves in the
atmosphere. The planetary waves are here
understood to be the very long, almost sta-
tionary waves observed in the atmosphere on a
daily basis and on time-mean maps. The troughs
and ridges in these waves are found in certain
preferred geographical positions as seen on
normal maps. The positions of the waves as
studied by a series OF daily maps seem to be in
the neighborhood of the preferred locations,
and one may perhaps best characterize the
motion of the waves as oscillations around
the mean positions.

1 The main part of the paper was presented at the
National Meeting of the American Meteorological
Society April 1960, Washington, D.C.
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The theory for the existence, maintenance
and motion of the planetary waves is still frag-
mentary. CHARNEY and ELIASSEN (1949) have
pointed to the importance of the large scale
mountains and friction for the understanding
of the existence of these waves, while Smaco-
RINSKY (1953) has investigated the combined
effect of large scale heat sources and friction.
Recently it has also been suggested that a
factor of major importance for the mainte-
nance of the planetary waves against frictional
dissipation could be a non-linear transfer of
kinetic energy from the smaller scales, where
kinetic energy is created by a direct conversion
of available potential energy on this (smaller)
scale (STARR, 1958, 1959, SALTZMAN, 1959 and
WuN-NIELSEN, 1959).

In the present study we shall assume from
the outset that the waves are stationary, We
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are therefore not dealing with the problem of
the motion of the planetary waves. The specific
problem to be considered here is the phase and
amplitude of the vertically averaged tempera-
ture field in the atmosphere re%ative to the
vertically averaged pressure-height in planetary
waves. We are therefore dealing with the
problem of the thermal structure of the plane-
tary waves. This problem is only a detail of
the general problem since it is concerned with
the adjustment of temperature relative to
height in already existing waves and therefore
assumes that the waves are maintained by
some process.

2. Representation of Temperature and Height

It was found preferable to restrict the main
part of the investigation to the mean tempera-
ture and mean height. The two fields were
found following the procedure originally out-
lined by Eriassen (1956). The height field is
represented by the following expression

Z(x,y,p,) = Z(%,7,1) + A(p) Z1(x,, 1) (2.1)

The function A(p) was determined by the
formula given by Eliassen:

U-U
{(-opp*
U(p) is a representative zonal wind profile.
In this case U(p) was taken from Buch’s data
for winter (1954). The bar over a quantity
means the average with respect to pressure, i.e.,

Pe
— 1
== d;
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where p, is the surface pressure (p,=100 cb).
The wind U=U(p) and the function A(p)

determined from (2.2) are given in Table 1.
It is seen by direct evaluation that the func-

tion A(p) defined by (2.2) satisfy the require-
ments discussed by ELiassen (1956) that

A=o, A2=1

(2.2)

(23)

(2.4)

The mean height field can be determined
directly from the definition of the bar operator
if we know the height field for sufficiently
many isobaric surfaces. In our case the normal
maps for the 1,000, 850, 700, 500, 300, 200,
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Table 1
P U(p), msec™? A(p)
o (o) — 1.8
10 15.5 0.7
20 19.1 1.3
30 18.0 I.I
40 15.8 0.8
50 13.6 0.4
60 10.8 — 0.03
70 8.1 — 0.5
8o 5.7 —o0.9
90 33 —1I3
100 2.1 — 1.7

U = 11.0msec™?
Ur=61 msec™!

and 100 mb prepared by Jacoss (1958), WEGE
(1957), and the U.S. WEATHER BUREAU (1952)
were used to define the mean height field
along 50° N in January. The deviation from
the mean height along s0° N is represented in
figure 1 as the solid curve.

If we multiply (2.1) by A(p) and next apply
the bar operator it is seen that

Zifepd= f Ap)Zdp  (25)

Using the same height fields as before and
the function A(p) given in Table 1, we can
compute Z7. The deviation from the average
value along 50° N is given in figure 1 as the
dashed curve.
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Fig. 1. The solid curve is the deviation from the latitudinal

average of the mean height field, Z, as a function of

longitude for $0° N, prepared from normal data for

January. The dashed curve is the corresponding curve
for the mean temperature, Zr.
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The mean height field Z shows the positions
of the two major troughs along about 140° E
and 80° W and the minor trough along 50° E.
The thermal field Zy shows to a very large
extent the same configuration, but with the
distinct difference that the thermal trough is
lagging behind the height trough by an
amount which varies from about 10° of
longitude in the trough along the castern coast
of Asia to 20—25° of longitude in the trough
along the east coast of North America.

If we knew the details of the laws for the
heating of the atmosphere, which would
have to be specified for all the different
components of heating (radiation, heat of
condensation and evaporation, heat exchange
with the underlying surface, etc.) we could
try to investigate whether it was possible to
compute the two curves in figure 1 from a
knowledge of the heating, the mountain
effect, and the frictional law. Lacking this
knowledge we may try to see how much we
can say about the relative distribution of tem-
perature and height considering only the
dynamical equations and disregard completely
the thermodynamics of the atmosphere. We
shall treat this problem in the next section.

3. The Dynamical Equation

The dynamical model to be used in the
following will be essentially the one given by
PuiLies (1958), but with the important modi-
fication that we shall incorporate the influence
of the lower boundary condition and in this
way pay attention to the effects of the topo-
graphical features of the earth and of friction.
As we are not here going to consider the
effects of the heating we may restrict the in-
vestigation to the vertically integrated vor-
ticity equation. We shall use the vorticity
equation in its simplest form:

J o
GVt ()
and shall further assume that the horizontal
wind and the vorticity may be computed from
the geostrophic assumption. The symbols in
(3.1) have the following meaning: v is the
horizontal wind vector, ¢ the relative vortic-
ity, f the Coriolis’ parameter (f; a standard
value) and w=dp/dt the vertical velocity.
Tellus XIII (1961), 2
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Introducing the expression (2.1) in (3.1) and
averaging over the complete depth of the
atmosphere we get:

Z—f +V-v(C+f)+ v VCT='§ wy (3.2)
P
where w, is the value of (dp/df) at the ground.

w, may now be related to the topography
of the earth and the friction in the following
way:

d
Wy = 4 +Vy vp - Weog  (3.3)
at /g

In our geostrophic model the pressure advec-
tion, v,-vp, will vanish. Hydrostatically,
we may write

P\ _ (%2
o), %%\ %t ),

which introduced in (3.3) results in

IZ .
Wy = ng[(W)g = Wx]

The wvertical velocity, W,, at the ground
may now be considered as composed of two
parts:

(3.4)

(3.5)

W= W, + W (3.6)

where W, is the vertical velocity due to the
sloping terrain, while W} is the vertical veloc-
ity produced by the skin friction. The vertical
velocity due to the mountains will be computed
from the following expression, which assumes.
that the height of the mountains is small:

W,=v,-vh (3.7)

where £ is the height of the ground over
mean sea level and v, the horizontal wind at
the ground, while the second component,
Wy, will be computed following the procedure
by CHArNEY and ELIASSEN (1949), which

results in the following expression:
Wy=F*{, (3.8)

where F* is assumed to be a constant.
(3.5) may now be written:

) .
W, =ggg[<9—tz)g— \ 70 F*Cg:l (3-9p

As we are concerned here with certain fea-
tures of the long-term average of the atmos-
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pheric height and temperature fields we may
assume that the flow is stationary. When this
assumption is introduced, and when we
further substitute from (3.9) into (3.2) we
obtain the following dynamic equation:

Vvl +f)+vrevir=

__ &

= —R—,}g(vg-vh +F*¢,) (3.10)
According to our model approximations we

may obtain the quantities at the ground

(assumed to be closed to 100 cb) from (2.1),1.¢.,

{vg=27+AgvT (3.11)
Cg = C + AgCT

where A, is the value of A(p) for p=p,=
100 cb.

Due to (3.11) and our geostrophic assump-
tion we may consider (3.10) as an equation

with two unknowns, Z and Zr. Another

equation relating Z to Zr could be derived
from a combination of the thermal vorticity
equation and the thermodynamic equation,
but this equation would involve the heating
and is not considered here, according to the
discussion in section 2.

In order to study the relative phase and
amplitude of the temperature and height field
we may, however, proceed in the following
way. One of these two fields may be assumed

to be known, say Z. From the dynamical
equation we may then find the solution for
Zr. The resulting field of Z1 can then be
compared with the observed distribution of
Zr. (3.10) is extremely laborious to solve in
its non-linear form. Due to this fact we may
proceed to lincarize the equation and obtain
solutions to this much simpler equation.

When the linearization has been made, the
geostrophic assumption introduced in the
resulting equation, and we further have made
use of (3.11) we may write the equation in
the form:

—Iv2Z 2Z ARV A

Ue B+ Ur 5 = (1)
3.12

_f Lok 55 .

= R’T;Ugax F(v:Z + A,v2Z7)

Due to the fact that atmospheric disturbances
have a limited meridional scale we shall in-
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troduce a meridional scale factor m in the eval-
uation of the Laplacian. We may thus write
the Laplacian operator in the form:

2 - 2
V=g m
(CHARNEY and ELIASSEN, 1949).
Introducing (3.13) in (3.12) we can write
the final equation in the form:

#Zr FAdZy  ,dZ;

(3.13)

o Uy dx
FAm?
~ g, Zr=H() (3.14)

where H(x) is given by the expression:
UbZ FdZ pU-miZ
Urdx®  Urp dx® Ur dx
£ U
R Tg UT dx:l

H(x)=

sz_
—FT*Z'F

(3.15)

The equation (3.14) with the expression
(3.15) for the function H(x) represents the
simplest possible system which mcorporates
the “effects of mountain and friction. When
we apply equation (3.14) to the real atmos-
phere we have disregarded the non-linear
effects, and we have further to determine the
value to be used for the frictional coefficient F
and the meridional scale factor m.

With respect to the frictional coefficient we
have some uncertainty regarding the numer-
ical value. SMAGORINSKY (1953) used a value
for F of 2 x 1075 sec™!. CHARNEY and ELIASSEN
(1949) made their investigation for two differ-
ent values, F=2 x107% sec™! and F=4 x107%
sec~L. The latter value was adopted by PHILLIPS
(1956) in his investigation of the general
circulation. The values for F quoted so far
were obtained by an application of Ekman’s
theory for friction in the surface layer. MinTZ
(1956) has tried to determine the value of
F using the vertically integrated vorticity
equation. He finds first of all a variation of F
over the map. More important perhaps is the
fact that he finds a mean value of F, which is
about four times larger than the one adopted
by Phillips or about 16 x 108 sec~1. It appears
therefore difficult to determine a value of F
to be used in our computations, because the
values suggested so far vary by almost one

Tellus XII (1961, 2
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order of magnitude. In view of this it was
decided to make the computation for several
values of F and determine the sensitivity of
the computation to these values.

CHARNEY and ELIASSEN (1949) as well as
SMAGORINSKY (1953) used a scale factor, m,
defined as in this investigation. The values
which these investigators adopted varied
between a meridional wave-length of 66 and
30 degrees of latitude based on the lateral
width of the Rocky Mountains and the major
Fourier components of the meridional varia-
tion of the heat sources and sinks.

A characteristic value of m may be found
from atmospheric data in the following way.
The representation (3.13) assumes that the

fields Z and Z1 may be written in the following
form:

Z = cos(my)g(x) (3.16)
from which it follows that
VA
ViZ=og-mZ (3.17)

m? can therefore be determined empirically
from the formula

mé = - (3.18)

Characteristic values of m were determined
by evaluating the right hand side of (3.18)
along latitude circles and next obtaining mean
values of m by averaging the individual values.
The computation was performed for 500 mb
maps for each day of the month of January
1959. The meridional wave-length correspond-
ing to m (m=2x/D) is given in Table 2 as a
function of latitude. The values in Table 2 are
obtained by averaging the results from the
individual days over the month.

Table 2

Latitude 30° | 40° | 50° | 60° | 70°

‘Wave-length, km | 6,500| 2,900| 4,300| 5,500| 8,700

It is seen in Table 2 that the effective me-
ridional wave-length in the middle latitudes
varies from about 3,000 to 6,000 km, which
agrees well with the values used by CHARNEY
and ELIASSEN (1949) and SMAGORINSKY (1953).
Tellus XIII (1961), 2
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The values of m used in the present calcula-
tions were varied in order to find the sensitivity
of the computations to the scale factor (see
Section ).

4. The Adjustment of Temperature to Height
in Sinusoidal Waves

In this section we are going to disregard the
mountain effect in order to gain some insight
into the phase and amplitude of the tempera-
ture wave relative to the height wave in simple
sinusoidal waves. We are in other words going
to assume that:

Z =14 sin kx

(4.1)
(4-2)

and we want to find a7/a, the relative ampli-
tude, and a7 the relative phase.

Substituting (4.1) and (4.2) in (3.14) and
(3.15) we find that the following set of
linear equations have to be satisfied:

and

Zr=arsin (kx + OCT)

Ur[ar cos ar] + P% [arsin ar] =

=(n%k—z‘5>5

FA . F_
- —k—g [arcosar] + Ur[arsinar] = 74 (4.4)

(4.3)

The solutions to (4.3} and (4.4) may be
written in the form:
ar _( Chr+ Pl \}
a “\Ur+ A Pl
_E __Ur-ACg
k UTCR+A3(F/I€)2
In (4.5) and (4.6) we have introduced the
notation:

(4.5)

tan ar= (4.6)

B

CmE ke

The relations (4.5) and (4.6) can be used to
study the relative amplitude and relative phase
as a function of the frictional coefficient F and
the zonal and meridional scale.

It will be noted that in the absence of friction
we find tan ap=0 which means that the thermal

waves is either in phase or 180° out of phase

Cr=U (4.7)
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with the height wave. In the same case we

find that

ICrl
Ur
In the evaluation of (4.5) and (4.6) as a

function of wave-numbers and the frictional
coeflicient the following parameters were

defined:

Ry

(4.8)

N=akcos ¢ (4.9)
a
M= M (4.10)

where a4 is the radius of the earth. N is the
number of waves in the zonal direction around
the hemisphere, while M is the number of
waves in the meridional direction in a hemi-
sphere, ie., from equator over the pole to
equator. Figure 2a—d shows isolines for ar/a
as a function of M and N. Figure 2a corresponds
to the case of no friction, while figure 2b—d
corresponds to increasing values of F. Figure
3a—d shows in a similar way the phase differ-
ence o1 as a function of the wave-numbers
M and N for increasing values of the frictional
coefficient F. The curves in figures 2 and 3

were computed with the values for U, Ur,
U,, and A, given in Table 1.

Several interesting facts regarding the im-
portance of friction for the adjustment of
temperature and height in planetary stationary
waves can be seen from figures 2 and 3. With
respect to the amplitude ratio ar/a we find

M Feoxio® s’ Fe2xi0" s Fe4xX10. 0’ F8xi0" sec
6 1 75, : 6 .75
T N \ |
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Fig. 2. Isolines of the amplitude ratio, a.fain, sinusoidal

stationary waves for different intensities of friction.

The horizontal coordinate is the number of waves around

the latitude circle so° N, while the vertical coordinate

is the number of waves in the hemisphere in the meridional
direction.
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Fig. 3. Isolines of the phase difference between the thermal

wave and the wave in the mean height field in sinusoidal,

stationary waves for different intensities of friction.
Coordinates as in figure 2.

that this number has its largest value for waves,
which are very long in the meridional direction
as well as in the zonal direction. When the
wave-lengths in the two directions decrease,
the amplitude ratio first decreases to a mini-
mum, but for waves which have a rather
short wave-length in both directions, the ratio
starts to increase again. We notice further
that the amplitude ratio is sensitive to
the magnitude of the frictional coefficient,
especially for waves which are very long in
both directions. In general the amplitude ratio
decreases as the friction increases. It is also
evident from figure 2 that there is no possibility
to explain the observed distribution of Zr

relative to Z from a frictionless theory. The
amplitude ratio would be too large.

If, on the other hand, the frictional coeffi-
cient was very large (F— oo) we would again
have tan ar=o0 and ap/a=1/|4,|~ 0.6 indi-
cating that the thermal wave would be in
phase with the mean height wave, but with an
amplitude much smaller than observed in
reality.

Figure 3a shows the dividing line between
the region where the thermal field would be
in phase, and the region where the thermal
field would be 180° out of phase with the
height field. As the friction increases we notice
that the dividing line (xr=o0) stays approxi-
mately in the same location in the diagram.
On the long wave side of the dividing lines we
find ot <o, which means that the temperature
field will be ahead of the height field in waves
which are long in the meridional direction as
well as the zonal, while xr > 0 on the short

Tellus XIII (1961), 2
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wave side of the dividing line. Here, the
temperature field will be lagging behind the
height field. For a small value ofg the friction
we find a large lag for waves which are short
in the meridional direction (M large), but this
lag decreases as the friction is increased.

From the diagrams in figures 2 and 3 it is
seen that it is rather unlikely that we can
explain the observed distribution of tempera-
ture relative to height, if the meridional scale
is very large, corresponding to M=1 to 2, and
the frictional coefhicient F is small. In this
case (see figures 2b and 3b) we would obtain
an amplitude ratio, which is somewhat larger
than 1, and we would further find the tem-
perature would precede the height field for
the large scale component in the zonal direc-
tion. Both of these statements are not in
agreement with the observed distribution as
shown in figure 1. .

The observed distribution of temperature
relative to height can therefore only be ex-
plained from thus linear theory if the meridional
scale can be assumed to correspond to M >3.
M =3 corresponds to a meridional wave-length
of about 60° of latitude. This meridional scale
is certainly a major one in the flow close to
the surface, and an inspection of BucH’s (1954)
analysis of the mean meridional wind averaged
in time shows that scales of this order of magni-
tude also are present on the higher levels.

In the next section we shall investigate the
results of a computation of the temperature
distribution (the dashed curve of figure 1) from
the mean height distribution (the solid curve of
figure 1). :

5. Computation of the Temperature
Distribution in Winter

The equation (3.14) with the expression (3.15)
for the right hand side can be solved for Zz if
we know Z and h. In this case Z was taken
from the curve on figure 1 giving the height
variation along 50° N for the January normal.
The mountain height & was obtained from the
maps prepared by BERKOFSKY and BERTONI
(1955). Equations (3.14) and (3.15) were put
into finite differences using the ordinary ap-
proximations with a grid length corresponding
to 10 degrees of longitude, which gives us 36
grid points. In this formulation, (3.14) is equiv-
alent to a system of 36 linear equations,
Tellus XIII (1961), 2
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which may be solved by a matrix calculation.
This technique was used in the solution of the
problem and was preferred over the relaxation
technique due to the rather few grid points.

According to the earlier discussion, the me-
ridional scale was set equal to the equivalent of
45 degrees of latitude (M=4) in order to see
whether it was possible to account for the
main pattern of the thermal field by a solution
of (3.14). The computation was made for
three different values of the frictional coeffi-
cient F=o0, F=2 x107% sec%, and F=4 x 10~%
sec™t. The results of these computations are
shown in figures 4, 5, and 6. The frictionless
case (figure 4) indicates clearly what was
already expected from section 4, namely that
the thermal field is essentially out of phase
with the mean height field and with an ampli-
tude, which is too large compared to the ob-
served distribution of Zr. Comparing next
figure 4 and figure 5 we find that the introduc-
tion of a moderate frictional coefficient has the
effect of decreasing the amplitude of the ther-
mal field and further to decrease the phase lag.
However, the computed Z7 field is still dis-
placed too much toward the west compared to
the observed distribution of Zr.

When we increase the frictional coefficient
to 4 x107® sec™! (figure 6) we find no further

m

§ 8 8450838835338 3§8
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Fig. 4. The dashed curve is the observed distribution of
the mean temperature, ZT’ reproduced from figure 1.
The solid curve is computed from eq. (3.14). Parameters:
U =11 m sec7?, UT=6.1 m sec”!, M=4, F=0x107%,

sec™ I,
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Fig. s. Same as fig. 4. Parameters: U=11m sec 1, Up=
=6.1 m séc“, M=4, F=2x107% sec™!.
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Fig. 6. Same as fig. 4. Parameters: U=11 m sec™7T,
Up=6.1 m sect, M=4, F=4x10"% sec7.

change in the amplitude, but the increased
value of F has the effect of decreasing the phase
lag between the computed Z7 field and the

mean height field Z. A comparison between
the computed and observed field of Z1 now
shows an agreement which is about as good
as we can expect considering the very simple
linear theory applied in these computations.

A number of other experiments using larger
values of the meridional scale was made. They
result in computed Zy-fields, which by and
large agree with the results obtained in the
preceding section. Figure 7 shows a case where
the meridional scale is 9o degrees of latitude
(M=2) and F=4 x107% sec"’. The main dif-
ference between the computed and observed
Z7-field is that the larger meridional scale now

A. WIIN-NIELSEN

forces the computed Zrfield to have its
troughs and ridges displaced somewhat toward
the east compared to the observed field. This is
especially noticeable in the ridge along 150° W
and the trough around 100° W.

6. Comments on the Assumptions

The treatment given of the present problem
in the preceding sections is admittedly ex-
tremely simplified. The two-parameter model
used in the calculations is not in itself a restric-
tion because the problem has been formu-
atled within the framework of the model since
we have restricted ourselves to a consideration
of the mean thickness and mean height field.
More severe is probably the linearization
which has been made of the dynamic equation
(3.10). The equation was linearized because
it so far has not been possible to solve the
complete, non-linear, two-dimensional equa-
tion. It is, however, likely that a smaller degree
of linearization still allows a solution of the
problem. A later investigation of the possibili-
ties for less restrictive assumptions regarding
the zonal winds as functions of latitude and
the meridional scale of the disturbances may
give a further insight into the adjustment
between the mean temperature field and the
mean height field.

One of the important factors in the present
treatment is the surface friction, which is taken
proportional to the surface vorticity. Even
if this representation may be sufficiently accu-
rate for the problem, it is a further assump-

IR T T SN ST VY SN TSN S SUU SN U SO S
80 100 120 40 160 180 |60 140 120 JOO 80 60 40 20°W O

1
O 20°E 40 60

Fig. 7. Same as fig. 4. Parameters: U=11m sec, Up=
6.1 m sec Y, M=2, F=4x10"% sec!.
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tion that the surface-wind and vorticity can
be expressed with sufficient accuracy by a
linear combination of the mean height and
mean temperature field using equation (3.11).
We may test the validity of this assumption by
computing the height field of the 1,000 mb
surface using the expression

Zy=Z+ A2 (6.1)

and comparing the computed profile (6.1) with
the observed profile, Zgp,, of the 1,000 mb
surface. The two curves are shown in figure 8.
It is seen that they compare fairly well although
there is a tendency to get a slightly larger
amplitude in the computed field. We may
therefore state that the surface height field
can be expressed quite accurately using two
parameters.

The effects of surface friction was taken into
account by CHARNEY and ELIASSEN (1949)
using the assumption that the surface flow in
agreement with the equivalent barotropic
assumption was parallel to the 500 mb flow
and a certain fraction (0.4) of this flow. A
comparison of figure 1 and figure 8 shows
that the flow patterns at the 1,000 mb level
are systematically displaced toward the east
relative to the vertical mean flow, Z, corre-
sponding to a westward tilt of the systems. It
appears therefore that the results obtained by
Charney and Eliassen may be partly fortuitous.
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Fig. 8. The observed profile of the 1,000 mb surface along

50° N for the normal map of January (solid curve)

compared to the 1,000 mb profile computed from the
two-parameter assumption (dashed curve).
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Fig. 9. The relative vorticity, measured by the second

finite difference, of the 1,000 mb surface for the normal

map of January computed from the two-parameter

assumption (eq. {6.1)) compared to the relative vorticity
of the mean height field multiplied by 0.4.

The second finite difference in the zonal direc-
tion (a measure of relative vorticity) of the 1,000
mb surface computed from the two-parameter
model (the solid curve in figure 8) is reproduced
in figure 9, as the solid curve. The dashed curve
in the same figure is the corresponding measure

of relative vorticity computed from the Z-
field and multiplied by o0.4. The displacement
towards the west of the latter curve relative
to the former is evident.

Burcer (1958) has recently made a scale
analysis of the vorticity equation for the
planetary flow in a frictionless and adiabatic
atmosphere. One of his conclusions is that the
vorticity equation for the planetary scale
reduces to

(6.2)

If we were to apply Burger’s argument’ to
the vertical mean flow with w=o0 for p=p,
the vertically integrated vorticity equation
would reduce to

pr+fv-v=o0

v=0 (6.3)
while the thermal vorticity equation in the
two-parameter case would be

ﬂ vr+ f VVvr=0
and the adiabatic equation

(6.4)
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! T L GBV -V =
9x+v£)y+anvT o)

(6.5)

o= ~adln®/dp is a measure of static stability
and B(p) = fFA(p)dp where A(p) is defined by
[¢]

(2.1). Eliminating v - vr from (6.4) and (6.5)
and linearizing we obtain

= o B\0ér
—oBR =Ty =
(U oB )7 I'v=o (6.6)
where I' = - % is a measure of the meridional

— i

%y
temperature gradient. From (6.6) it follows
in the quasi-geostrophic case that

vr=0 (6.7)

and no thermal flow could exist.

The next natural step from Burger’s analysis
will be to incorporate the vertical velocity
at the lower boundary caused by friction and
mountains, but still neglect the advections of
the relative vorticities. The vertically inte-
grated vorticity equation may in this case be
obtained from (3.14) and (3.15) by neglecting
all terms except those related to the beta-effect,
friction and mountains. We obtain:

a2z
deT_ m*Zt
&z BIZ f U, d;(,é's)
__L|%L ey PoL Ledh
T A Ldx? m2Z+F dx +RTg F dx:l

Taking again the simple case in which we
neglect the effect of the mountains, but retain
the frictional effects we obtain substituting
(4.1) and (4.2) into (6.8):

gk

T+ miF

From (6.9) it is seen that ar always will be
negative indicating that we will have the
temperature field preceding the height field,
which is contrary to the observed distribution
in winter. It foil}:)ws therefore that the advec-
tion of relative vorticity plays an important
role in the adjustment between the tempera-
ture field and height field.

In view of the conclusions obtained theoreti-

tan ar= (6.9)

A. WIIN-NIELSEN

cally above it becomes interesting to compare
the magnitude and distribution of the different
terms in the vorticity equation to the field of
vertical velocity (or divergence) for a large
scale flow. The normal maps for January were
selected as representing a possible stationary
flow containing only the planetary scales.

The vertical velocity may be computed
from the vorticity equation in the stationary
case by integrating from the lower boundary
and upwards. We get

P p
p f I .
=" vdp+ | v-vidp+ o, (6.11)
f f 2 (
Pg Pg
where w, is the vertical velocity at the ground.
‘We may write

wg= - goo(Wr+ W) (6.12)
where
W,=?ch (6.13)
and
W,=5 (22 ) (6.14)

W and W, are the vertical velocities due
to friction and mountains, respectively, H is
the height of the homogeneous atmosphere, Z,
the height of the 1,000 mb surface, and b is
the height of the mountains.

Formally, we can write (6.11) in the form

® =ws+ .+ W+ (6.15)
Baor
o a5l J 7]
Pg
{6.16)

_g -
wa _fzpf{J(Z’ &)}y dp

H
W= —4g QgTFCg

{ wy = ‘g@g§J(Zx’ h)

We may now measure the contribution
from the different terms by computing their
contribution to the total vertical velocity.

Tellus XIIT (1961), 2
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Fig. 10. A zonal cross-section along 50° N of the vertical velocity, wg. January normal maps.
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Fig. 11. The divergence in the zonal cross-section computed from the distribution in fig. r10.
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Fig. 12. A zonal cross-section along 50° N of the vertical velocity, w . January normal maps.
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Fig. 13. The divergence in the zonal cross section computed from the distribution in fig. 12.
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Figure 10 shows a zonal cross section along
50° N of wp, while figure 11 is the divergence
computed from the distribution given in fig.
10. These two figures should be compared with
figures 12 and 13 which show the distribution
of w, and the corresponding divergence. It is
evident that w, is not negligible compared to
ws and further that the two terms have a
tendency to counteract each other. It there-
fore turns out that the vorticity advection
gives a significant contribution to the total
vertical ve%ocity and divergence.

The vertical velocity due to friction and
mountains enters only at the lower boundary
in our formulation. Figures 14 and 15 show
the vertical velocity due to these effects as a
function of longitude at 50° N. Noticein partic-
ular that the vertical velocities due to friction
are generally larger than those due to the
mountains. The frictional vertical velocity
over the Pacific Ocean is comparable with w,
in order of magnitude.

Figures 16 and 17 show the distribution of
vertical velocity and divergence including all
four terms in (6.15). Comparing these figures
with figures 10 and 11, respectively, it is seen
that wp is greatly modified by the three other
terms.

wix lo®cbsec™!

A. WIIN-NIELSEN

7. General Conclusions

It has been shown in the preceding sections
that some gross features of the distribution
of the mean thermal field relative to the mean
height field can be described by a linearized
form of the vertically integrated vorticity
equation. An estimate of a typical meridional
scale for mid-tropospheric disturbances ob-
tained from oo mb data for January 1959
shows that the scale in the average for middle
latitudes varies between 3,000 and 6,000 km.
A computation of the field of vertical motion in
a zonal cross section along 50° N based upon
the normal maps for January shows that the
cffects of horizontal vorticity advection, fric-
tion, and mountains cannot be neglected
compared with the S-effect even for the plane-
tary scale.
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