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Abstract 
It is shown that some gross features of the distribution of the mean temperature relative to the 

mean height on the normal maps for January can be computed from the vertically integrated 
linearized vorticity equation, if the effects of surface friction and mountains are included in the 
equation for the stationary case. By a mathematical analysis supplemented by certain numerical 
experiments it is shown that it is necessary to assume a meridional scale parameter corresponding 
to less than 90 degrees of latitude in order to obtain the correct phase-lag. An empirical deter- 
mination of the meridional wave-length was carried out using 500 mb data for a single month 

Section 6 contains some comments on the assumptions made in this study. It is especially 
pointed out that the effect of horizontal advection of vorticity and the effects of the lower 
boundary condition (friction and topography) cannot be neglected in comparison with the beta- 
effect in studies of stationary motion on the planetary scale. 

(January 1959). 

I. htroduction 

The main problem in the present paper is 
the adjustment between the temperature and 
the height field in planetary waves in the 
atmosphere. The planetary waves are here 
understood to be the very long, almost sta- 
tionary waves observed in the atmosphere on a 
daily basis and on time-mean maps. The troughs 
and ridges in these waves are found in certain 
preferred geographical positions as seen on 
normal maps. The ositions of the waves as 

the neighborhood of the preferred locations, 
and one may perhaps best characterize the 
motion of the waves as oscillations around 
the mean positions. 

studied by a series o P daily maps seem to be in 

The main part of the paper was presented at the 
National Meeting of the American Meteorological 
Society April 1960, Washington, D.C. 
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The theory for the existence, maintenance 
and motion of the planetary waves is still frag- 
mentary. CHARNEY and ELIASSEN (1949) have 
pointed to the importance of the large scale 
mountains and friction for the understandmg 
of the existence of these waves, while SMAGO- 
RINSKY (1953) has investigated the combined 
effect of large scale heat sources and friction. 
Recently it has also been suggested that a 
factor of major importance for the mainte- 
nance of the planetary waves against frictional 
dissipation could be a non-linear transfer of 
kinetic energy from the smaller scales, where 
kinetic energy is created by a direct conversion 
of available potential energy on this (smaller) 
scale (STARR, 1958, 1959, SALTZMAN, 1959 and 
WIIN-NIELSEN, 1959). 

In the present study we shall assume from 
the outset that the waves are stationary. We 
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are therefore not dealing with the problem of 
the motion of the planetary waves. The specific 
problem to be considered here is the phase and 
amplitude of the vertically avera ed tempera- 

to the 
vertically averaged pressure-height in planetary 
waves. We are therefore dealing with the 
problem of the thermal structure of the plane- 
tary waves. Ths problem is only a detail of 
the general problem since it is concerned with 
the adjustment of temperature relative to 
height in already existing waves and therefore 
assumes that the waves are maintained by 
some process. 
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2. Representation of Temperature and Height 

It was found preferable to restrict the main 
part of the investigation to the mean tempera- 
ture and mean height. The two fields were 
found following the procedure originally out- 
lined by ELIASSEN (1956). The height field is 
represented by the following expression 

z(X, y , p ,  t )  = z ( X ,  y, t )  -k A(p)ZT(X, yt t )  (2.1) 
The function A(p) was determined by the 

formula given by Eliassen: 

U(p) is a representative zonal wind profile. 
In this case U(p)  was taken from Buch's data 
for winter (1954). The bar over a quantity 
means the average with respect to pressure, i.e., 

Pe 

where p g  is the surface pressure (~,=Ioo cb). 
The wind U=U(p)  and the function A(p) 

determined from (2.2) are given in Table I. 
It is seen by direct evaluation that the func- 

tion A(p) defmed by (2.2) satisfy the require- 
ments discussed by ELIASSEN (1956) that 

- - 
A = o ,  A2=I (2.4) 

The mean height field can be determined 
directly from the definition of the bar operator 
if we know the height field for sufficiently 
many isobaric surfaces. In our case the normal 
maps for the 1,000, 850, 700, 500, 300, 200, 
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and IOO mb prepared byJAcoss (1958), WEGE 
(1957), and the U.S. WEATHER BUREAU (1952) 
were used to define the mean height field 
along 50'N in January. The deviation from 
the mean height along 50' N is represented in 
figure I as the solid curve. 

If we multiply (2.1) by A(p) and next apply 
the bar operator it is seen that Ir 

Z T ( X , Y ,  t )  = - A(p)Zdp (2.5) 
P g  

Using the same height fields as before and 
the function A(p) given in Table I, we can 
compute ZT. The deviation from the average 
value along 50' N is given in figure I as the 
dashed curve. 

L I . . . . . .  
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Fig. I .  The solid curve is the deviation from the latitudinal 
average of the mean height field, z, as a function of 
longitude for 50" N, prepared from normal data for 

January. The dashed curve is the corresponding curve 
for the mean temperature, 2,. 

Tellus XI11 (1961). 2 

-160 I 



129 S T A T I O N A R Y  P L A N E T A R Y  W A V E S  

The mean height field Z shows the positions 
of the two major troughs along about 140" E 
and 80" W and the minor trough along 50" E. 
The thermal field ZT shows to a very large 
extent the same configuration, but with the 
distinct difference that the thermal trough is 
lagging behind the height trough by. an 
amount which varies from about 10" of 
longitude in the trough along the eastern coast 
of Asia to 20-25" of longitude in the trough 
along the east coast of North America. 

If we knew the details of the laws for the 
heating of the atmosphere, which would 
have to be specified for all the lfferent 
components of heating (radiation, heat of 
condensation and evaporation, heat exchange 
with the underlying surface, etc.) we could 
try to investigate whether it was possible to 
compute the two curves in figure I from a 
knowledge of the heating, the mountain 
effect, and the frictional law. Lacking this 
knowledge we may try to see how much we 
can say about the relative distribution of tem- 
perature and height considering only the 
dynamical equations and disregard completely 
the thermodynamics of the atmosphere. We 
shall treat this problem in the next section. 

3. The Dynamicd Equation 

The dynamical model to be used in the 
following will be essentially the one given by 
PHILLIPS (1958), but with the important modi- 
fication that we shall incorporate the influence 
of the lower boundary condition and in this 
way pay attention to the effects of the topo- 
gra,phical features of the earth and of friction. 
As we are not here going to consider the 
effects of the heating we may restrict the in- 
vestigation to the vertically integrated vor- 
ticity equation. We shall use the vorticity 
equation in its simplest form: 

ao 
~+v.v(5+f)=fo-- at aP ( 3 4  

and shall further assume that the horizontal 
wind and the vorticity may be computed from 
the geostrophic assumption. The symbols in 
(3.1) have the following meaning: v is the 
horizontal wind vector, 5 the relative vortic- 
ity, f the Coriolis' parameter (fo a standard 
value) and o = d p / d t  the vertical velocity. 
Tellur XI11 (1961), 2 

Introducing the expression (2.1) in (3.1) and 
averaging over the complete depth of the 
atmosphere we get: 

where ws is the value of (dpldt) at the ground. 
os may now be related to the top0 raphy 

of the earth and the friction in the fol Ig owing 
way : 

In our geostrophic model the pressure advec- 
tion, v, - o ps will vanish. Hydrostatically, 
we may write 

which introduced in (3.3) results in 
2Z 

~s=Be.[(& K] (3.5) 

The vertical velocity, W', at the ground 
may now be considered as composed of two 
parts : 

ws= W f +  w, (3.6) 
where W, is the vertical velocity due to the 
sloping terrain, while W' is the vertical veloc- 
ity produced by the skin friction. The vertical 
veloci due to the mountains will be computed 

that the height of the mountains is small: 

where h is the height of the ground over 
mean sea level and vn the horizontal wind at 
the ground, while the second component, 
Wf, will be computed following the rocedure 
by CHARNEY and ELIASSEN (1948, which 
results in the following expression: 

from t T e following expression, which assumes. 

Wf =vs-v k (3.7) 

Wj-= F*Cs (3.8) 

where F* is assumed to be a constant. 
(3.5) may now be written: 

As we are concerned here with certain fea- 
tures of the long-term average of the atmos- 
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pheric height and temperature fields we may 
assume that the flow is stationary. When this 
assumption is introduced, and when we 
further substitute from (3.9) into (3.2) we 
obtain the following dynamic equation : 

v - v ( ~  +A + v T - v ~ T =  

= - g h ( v g - v h  +F*Cg) (3.10) 
RT, 

According to our model approximations we 
may obtain the quantities at the ground 
(assumed to be closed to IOO cb) from (2.1)~i.e.~ 

where Ag is the value of A(p) for p = p , =  
IOO cb. 

Due to (3.11) and our geostrophic assump- 
tion we may consider (3.10) as an equation 
with two unknowns, Z and ZT. Another 
equation relating 2 to ZT could be derived 
from a combination of the thermal vorticity 
equation and the thermodynamic equation, 
but this equation would involve the heating 
and is not considered here, according to the 
discussion in section 2. 

In order to study the relative phase and 
amplitude of the temperature and height field 
we may, however, proceed in the following 
way. One of these two fields may be assumed 
to be known, say Z. From the dynamical 
equation we may then find the solution for 
Z T .  The resulting field of Z T  can then be 
compared with the observed distribution of 
Z T .  (3.10) is extremely laborious to solve in 
its non-linear form. Due to this fact we may 
proceed to linearize the equation and obtain 
solutions to t h s  much simpler equation. 

When the linearization has been made, the 
geostrophic assumption introduced in the 
resulting equation, and we further have made 
use of (3.11) we may write the equation in 
the form : 

Due to the fact that atmospheric disturbances 
have a limited meridional scale we shall in- 

troduce a meridional scale factor m in the eval- 
uation of the Laplacian. We may thus write 
the Laplacian operator in the form: 

d 2  
m2 (3.13) V 2  =a- 

(CHARNEY and ELIASSEN, 1949). 

the final equation in the form: 
Introducing (3.13) in (3.12) we can write 

~ d 3 Z ~  + FA -+- d 2 Z T  - m2 d z T  __ - 
Ax3 UT dx2 d x  

where H(a) is given by the expression: 
- -  
U d 3 Z  F d2Z /IF- m2dZ +--+-- 

H(x)=  - [ U , S  UT dx2 UT dx 

The equation (3.14) with the expression 
(3.15) for the function H(x)  represents the 
simplest possible system which incorporates 
the effects of mountain and friction. When 
we apply equation (3.14) to the real atmos- 
phere we have disregarded the non-linear 
effects, and we have further to determine the 
value to be used for the frictional coefficient F 
and the meridional scale factor m. 

With respect to the frictional coefficient we 
have some uncertainty regarding the numer- 
ical value. SMAGORINSKY (1953) used a value 
for F of 2 x 10-6 sec-l. CHARNEY and ELIASSEN 
(1949) made their investigation for two differ- 
ent values, F=2 X I O - ~  sec-l and F=4  X I O - ~  
sec-l. The latter value was adopted by PHILLIPS 
(1956) in h s  investigation of the general 
circulation. The values for F quoted so far 
were obtained by an application of Ekman's 
theory for friction in the surface layer. MINTZ 
(1956) has tried to determine the value of 
F using the vertically integrated vorticity 
equation. He finds first of all a variation of F 
over the map. More important perhaps is the 
fact that he finds a mean value of F ,  whch is 
about four times larger than the one adopted 
by Phllips or about 16 x I O - ~  sec-1. It appears 
therefore difficult to determine a value of F 
to be used in our computations, because the 
values suggested so far vary by almost one 

Tellus XI11 (1961). 2 
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order of magnitude. In view of this it was 
decided to make the computation for several 
values of F and determine the sensitivity of 
the computation to these values. 

CHARNEY and ELIASSEN (1949) as well as 
SMAGORINSKY (1953) used a scale factor, m ,  
defined as in this investigation. The values 
which these investigators adopted varied 
between a meridional wave-length of 66 and 
3 0  degrees of latitude based on the lateral 
width of the Rocky Mountains and the major 
Fourier components of the meridional varia- 
tion of the heat sources and sinks.  

A characteristic value of m may be found 
from atmospheric data in the following way. 
The representation (3.13) assumes that the 
fields Zand Z T  may be written in the following 
form : 

from which it follows that 
Z = cos (my)g(x) (3.16) 

rnz can therefore be determined empirically 
from the formula 

( 3 . 4  

Characteristic values of m were determined 
by evaluating the right hand side of (3.18) 
along latitude circles and next obtaining mean 
values of m by averaging the individual values. 
The computation was performed for 5 0 0  mb 
maps for each day of the month of January 
1959. The meridional wave-length correspond- 
ing to m (m=2n/D) is given in Table 2 as a 
function of latitude. The values in Table 2 are 
obtained by averaging the results from the 
individual days over the month. 

Table z 

I Wave-length, km I I I I I I  6,500 2,900 4,300 5,500 8,700 

It is seen in Table 2 that the effective me- 
ridional wave-length ih the middle latitudes 
varies from about 3,000 to 6,000 km, whch 
agrees well with the values used by CHARNEY 
and ELIASSEN (1949) and SMAGORINSKY (1953). 
Tellus XI11 (1961), 2 

The values of m used in the present calcula- 
tions were varied in order to find the sensitivity 
of the computations to the scale factor (see 
Section 5 ) .  

4. The Adjustment of Temperature to Height 
in Sinusoidal Waves 

In this section we are going to disregard the 
mountain effect in order to gain some insight 
into the phase and amplitude of the tempera- 
ture wave relative to the height wave in simple 
sinusoidal waves. We are in other words going 
to assume that: 

and 
Z= Z sin kx ( 4 4  

(4.2) Z T  = UT sin (kx + t(T) 

and we want to find uT/Z, the relative ampli- 
tude, and 41. the relative phase. 

Substituting (4.1) and (4.2) in (3.14) and 
(3.15) we find that the following set of 
linear equations have to be satisfied: 

(4.4) 

The solutions to (4.3) and (4.4) may be 
written in the form: 

In (4.5) and (4.6) we have introduced the 
notation : 

The relations (4.5) and (4.6) can be used to 
study the relative amplitude and relative phase 
as a function of the frictional coefficient F and 
the zonal and meridional scale. 

It will be noted that in the absence of friction 
we find tan ay = o which means that the thermal 
waves is either in phase or 180' out of phase 
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with the height wave. In the same case we 
find that 

In the evaluation of (4.5) and (4.6) as a 
function of wave-numbers and the frictional 
coefficient the following parameters were 
defined : 

N= ak cos y (4.9) 

M=-m (4.10) 
U 

2 

where a is the radius of the earth. N is the 
number of waves in the zonal direction around 
the hemisphere, while M is the number of 
waves in the meridional direction in a hemi- 
sphere, i.e., from equator over the pole to 
equator. Figure za-d shows isolines for U T / ~  
as a function of M and N. Figure za corresponds 
to the case of no friction, wlde figure zb-d 
corresponds to increasing values of F. Figure 
3a-d shows in a simdar way the phase differ- 
ence CCT as a function of the wave-numbers 
M and N for increasing values of the frictional 
coefficient F. The curves in figures z and 3 
were computed with the values for V, UT, 
U,, and A+ given in Table I. 

Several interesting facts regarding the im- 
portance of friction for the adjustment of 
temperature and height in planetary stationary 
waves can be seen from figures 2 and 3. With 
respect to the amplitude ratio a T / a  we find 

Fig. 2. Isolines of the amplitude ratio, aTl;iin, sinusoidal 
stationary waves for different intensities of friction. 
The horizontal coordinate is the number of waves around 
the latitude circle 50' N, while the vertical coordinate 
is the number of waves in the hemisphere in the meridional 

direction. 

Fig. 3. Isolines of the phase difference between the thermal 
wave and the wave in the mean height field in sinusoidal, 
stationary waves for different intensities of friction. 

Coordinates as in figure 2. 

that this number has its largest value for waves, 
which are very long in the meridional direction 
as well as in the zonal direction. When the 
wave-lengths in the two directions decrease, 
the amplitude ratio first decreases to a mini- 
mum, but for waves which have a rather 
short wave-length in both directions, the ratio 
starts to increase again. We notice further 
that the amplitude ratio is sensitive to 
the magnitude of the frictional coefficient, 
especially for waves which are very long in 
both directions. In general the amplitude ratio 
decreases as the friction increases. It is also 
evident from figure 2 that there is no possibility 
to explain the observed distribution of Z T  

relative to Z from a frictionless theory. The 
amplitude ratio would be too large. 

If, on the other hand, the frictional coefi- 
cient was very large ( F +  .o) we would again 
have tan t(T' o and UT/~=I/IA,I N 0.6 indi- 
cating that the thermal wave would be in 
phase with the mean height wave, but with an 
amplitude much smaller than observed in 
reality. 

Figure 3a shows the dividing line between 
the region where the thermal field would be 
in phase, and the region where the thermal 
field would be 180' out of phase with the 
height field. As the friction increases we notice 
that the dividing line (ccT=o) stays approxi- 
mately in the same location in the diagram. 
On the long wave side of the dividing lines we 
find L%T < 0, which means that the temperature 
field will be ahead of the height field in waves 
which are long in the mendional direction as 
well as the zonal, while a T  > o on the short 

Tellur XI11 (1961). 2 
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wave side of the dividing line. Here, the 
temperature field will be laggin behind the 

we frnd a large lag for waves which are short 
in the meridional direction (M large), but this 
lag decreases as the friction is increased. 

From the diagrams in figures 2 and 3 it is 
seen that it is rather unlikely that we can 
explain the observed distribution of tempera- 
ture relative to height, if the meridional scale 
is very large, corresponding to M= I to 2, and 
the frictional coefficient F is small. In this 
case (see figures 2b and 3b) we would obtain 
an amplitude ratio, which is somewhat larger 
than I, and we would further find the tem- 
perature would precede the height field for 
the large scale component in the zonal direc- 
tion. Both of these statements are not in 
agreement with the observed distribution as 
shown in figure I. 

The observed distribution of temperature 
relative to height can therefore only be ex- 
plained from this linear theory if the meridional 
scale can be assumed to correspond to M13. 
M = 3 corresponds to a meridional wave-length 
of about 60" of latitude. This meridional scale 
is certainly a major one in the flow close to 
the surface, and an inspection of BucH's (1954) 
analysis of the mean meridional wind averaged 
in time shows that scales of this order of magni- 
tude also are present on the higher levels. 

In the next section we shall investigate the 
results of a computation of the temperature 
distribution (the dashed curve of figure I) from 
the mean height distribution (the solid curve of 
figure I). 

height field. For a small value o 1: the friction 

5. Computation of the Temperature 
Distribution in Winter 

The equation(3.14) with the expression(3.15) 
for the right hand side can be solved for ZT if 
we know z and h. In this case z was taken 
from the curve on figure I giving the height 
variation along 50' N for the January normal. 
The mountain height h was obtained from the 
maps prepared by BERKOFSKY and BERTONI 
(1955). Equations (3.14) and (3.15) were put 
into finite differences using the ordinary ap- 
proximations with a grid length corresponding 
to 10 degrees of longitude, which gives us 36 
grid points. In t h i s  formulation, (3.14) is equiv- 
alent to a system of 36 h e a r  equations, 
Tellur XI11 (1961). 2 

which may be solved b a matrix calculation. 

problem and was preferred over the relaxation 
technique due to the rather few grid points. 

According to the earlier discussion, the me- 
ridional scale was set equal to the equivalent of 
45 degrees of latitude (M=4) in order to see 
whether it was possible to account for the 
main pattern of the thermal field by a solution 
of (3.14). The computation was made for 
three different values of the frictional coeffi- 
cient F=o, F = 2  x I O - ~  sec-I, and F=4  x I O - ~  
sec-1. The results of these computations are 
shown in figures 4, 5, and 6. The frictionless 
case (figure 4) indicates clearly what was 
already expected from section 4, namely that 
the thermal field is essentially out of phase 
with the mean height field and with an ampli- 
tude, which is too large compared to the ob- 
served distribution of ZT. Comparing next 
figure 4 and figure 5 we find that the introduc- 
tion of a moderate frictional coefficient has the 
effect of decreasing the amplitude of the ther- 
mal field and further to decrease the phase lag. 
However, the computed ZT field is still dis- 
placed too much toward the west compared to 
the observed distribution of ZT. 

When we increase the frictional coefficient 
to 4 x 10-6 sec-1 (figure 6) we find no further 

This technique was use B in the solution of the 

I . .  - . -  
o a a m w  ~ o o o ~ o * o u o ~ ~ ~ o ~ w e o a ~ o  

Fig. 4. The dashed curve is the observed distribution of 
the mean temperature, Z T ,  reproduced from figure I. 

The solid curve is computed from eq. (3.14). Parameters: 
U = 11 m sec-l, UT=6.1 m sec-1, M=4, F = o  x IO-~, 

sec-I. 

- 
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Fig. 6. Same as fig. 4. Parameters: U = I I  m sec-', 

U -6.1 m sec-1, M = 4 ,  F = 4  x I O - ~  sec-1. T -  
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change in the amplitude, but the increased 
value of F has the effect of decreasing the phase 
lag between the computed ZT field and the 
mean height field Z. A comparison between 
the computed and observed field of ZT now 
shows an agreement which is about as good 
as we can expect considering the very simple 
linear theory applied in these computations. 

A number of other experiments using larger 
values of the meridional scale was made. They 
result in computed ZT-fields, which by and 
large agree with the results obtained in the 
preceding section. Figure 7 shows a case where 
the meridional scale is go degrees of latitude 
(M=2)  and F = 4  x I O - ~  sec-I. The main dif- 
ference between the computed and observed 
Zrfield is that the larger meridional scale now 

- 

forces the computed &-field to have its 
troughs and ridges displaced somewhat toward 
the east compared to the observed field. This is 
especially noticeable in the ridge along 150' W 
and the trough around 100' W. 

-120 

-140 

-160 

6. Comments on the Assumptions 

The treatment given of the present problem 
in the preceding sections is admittedly ex- 
tremely simplified. The two-parameter model 
used in the calculations is not in itself a restric- 
tion because the problem has been formu- 
atled within the framework of the model since 
we have restricted ourselves to a consideration 
of the mean thickness and mean height field. 
More severe is probably the linearization 
which has been made of the dynamic equation 
(3.10). The equation was linearized because 
it so far has not been possible to solve the 
complete, non-linear, two-dimensional equa- 
tion. It is, however, likely that a smaller degree 
of linearization still allows a solution of the 
problem. A later investigation of the possibili- 
ties for less restrictive assumptions regarding 
the zonal winds as functions of latitude and 
the meridional scale of the disturbances may 
give a further insight into the adjustment 
between the mean temperature field and the 
mean height field. 

One of the important factors in the present 
treatment is the surface friction, which is taken 
proportional to the surface vorticity. Even 
if this representation may be sufficiently accu- 
rate for the problem, it is a further assump- 

- 
~ 
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tion that the surface-wind and vorticity can 
be expressed with sufficient accuracy by a 
linear combination of the mean height and 
mean temperature field using equation (3 .I I). 
We may test the validity of this assumption by 
computing the height field of the 1,000mb 
surface using the expression 

and comparing the computed profile (6.1) with 
the observed profile, Zobs, of the 1,000 mb 
surface. The two curves are shown in figure 8. 
It is seen that they compare fairly well although 
there is a tendency to get a slightly larger 
amplitude in the computed field. We may 
therefore state that the surface height field 
can be expressed quite accurateIy using two 
parameters. 

The effects of surface friction was taken into 
account by CHARNEY and ELIASSEN (1949) 
using the assumption that the surface flow in 
agreement with the equivalent barotropic 
assumption was parallel to the 500 mb flow 
and a certain fraction (0.4) of this flow. A 
comparison of figure I and figure 8 shows 
that the flow patterns at  the 1,000 mb level 
are systematically displaced toward the east 
relative to the vertical mean flow, Z, corre- 
sponding to a westward tilt of the systems. It 
appears therefore that the results obtained by 
Charney and Eliassen may be partly fortuitous. 

:;:I , , , . . . . . . , , , , , , , . , 
- 1 0  

o ma a a i m c u t w r o  m m  y o m  m w  w o B Y O  

Fig. 8. The observed profile of the 1,000 mb surface along 
50°N for the normal map of January (solid curve) 
compared to the 1,000 mb profile computed from the 

two-parameter assumption (dashed curve). 
Tellur XI11 (1961). 2 

Fig. 9. The relative vorticity, measured by the second 
finite difference, of the 1,000 mb surface for the normal 
map of January computed from the two-parameter 
assumption (eq. (6.1)) compared to the relative vorticity 

of the mean height field multiplied by 0.4. 

The second finte difference in the zonal direc- 
tion (a measure of relativevorticity) of the 1,000 
mb surface computed from the two-parameter 
model (the solid curve in figure 8) is reproduced 
in figure 9, as the solid curve. The dashed curve 
in the same figure is the corresponding measure 
of relative vorticity computed from the 2- 
field and multiplied by 0.4. The displacement 
towards the west of the latter curve relative 
to the former is evident. 

BURGER (1958) has recently made a scale 
analysis of the vorticity equation for the 
planetary flow in a frictionless and adiabatic 
atmosphere. One of his conclusions is that the 
vorticity equation for the planetary scale 
reduces to 

/9v + f v .v = 0 (6.4 
If we were to ap ly Burger's argument to 

the vertically integrated vorticity equation 
would reduce to 

the vertical mean d ow with w = o for p =pi  

(6.3) 
- 
v = o  

while the thermal vorticity equation in the 
two-parameter case would be 

and the adiabatic equation 
f V ' V T = O  (6.4) 
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a$T - a 4 T  - - 

a x  2y 
tr - + v - + OB'V -VT= o (6.5) 

o = - aJln8/2p  is a measure of static stability 

and B ( p )  = J A ( p ) d p  where A ( p )  is defined by 
(2.1). Eliminating v - V T  from (6.4) and (6.5) 
and linearizing we obtain 

P 

0 

24 T 

2Y 
where I. = - - is a measure of the meridional 

temperature gradient. From (6.6) it follows 
in the quasi-geostrophic case that 

v T =  0 (6.7) 
and no thermal flow could exist. 

The next natural step from Burger's analysis 
will be to incorporate the vertical velocity 
at the lower boundary caused by friction and 
mountains, but still neglect the advections of 
the relative vorticities. The vertically inte- 
grated vorticity equation may in this case be 
obtained from (3.14) and (3.15) by neglecting 
all terms except those related to the beta-effect, 
friction and mountains. We obtain: 

- gdz 
m 2 Z + - -  F dx 

f" 
RT, 

+-- 
Taking again the simple case in which we 

neglect the effect of the mountains, but retain 
the frictional effects we obtain substituting 
(4.1) and (4.2) into (6.8): 

(6-9) 
B k  tan aT= - -- - k 2 + m 2 F  

B 
k 2 + m 2  (F/k)2 

? = I [ I  - + (->"I-]" (6.10) 
a lABl 

From (6.9) it is seen that aT always will be 
negative indicating that we will have the 
temperature field preceding the height field, 
which is contra to the observed distribution 

tion of relative vorticity plays an important 
role in the adjustment between the tempera- 
ture field and height field. 

In view of the conclusions obtained theoreti- 

in winter. It fo 7 ows therefore that the advec- 

cally above it becomes interesting to compare 
the magnitude and distribution of the different 
terms in the vorticity equation to the field of 
vertical velocity (or divergence) for a large 
scale flow. The normal maps for January were 
selected as representing a possible stationary 
flow containing ody  the planetary scales. 

The vertical velocity may be computed 
from the vorticity equation in the stationary 
case by integrating from the lower boundary 
and upwards. We get 

p, p g  

where W, is the vertical velocity at the ground. 
We may write 

W g  = - ge,( w,+ wd (6.12) 
where 

H w, = - FCg f 
and 

W, and W, are the vertical velocities due 
to friction and mountains, respectively, H is 
the height of the homogeneous atmosphere, 2, 
the height of the 1,000 mb surface, and h is 
the height of the mountains. 

Formally, we can write (6.11) in the form 

(6.15) 

I 0 

(6.16) 

We may now measure the contribution 
from the different terms by computing their 
contribution to the total vertical velocity. 

Tellus XI11 (1961). 2 
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Fig. 10. A zonal cross-section along 50' N of the vertical velocity, 08. January normal maps. 

Fig. 11. The divergence in the zonal cross-section computed from the distribution in fig. 10. 

Fig. 12. A zonal cross-section along 50' N of the vertical velocity, a,. January normal maps. 

Fig. 13. The divergence in the zonal cross section computed from the distribution in fig. 12. 

Tellur XI11 (1961). 2 
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Figure 10 shows a zonal cross section along 
50' N of WB, while figure 11 is the divergence 
computed from the distribution given in fig. 
10. These two figures should be compared with 
figures 12 and 13 which show the distribution 
of o, and the corresponding divergence. It is 
evident that LO, is not negligible compared to 

and further that the two terms have a 
tendency to counteract each other. It there- 
fore turns out that the vorticity advection 
gives a si nificant contribution to the total 

The vertical velocity due to friction and 
mountains enters only at the lower boundary 
in our formulation. Figures 14 and 15 show 
the vertical velocity due to these effects as a 
function of longitude at 50' N. Noticeinpartic- 
ular that the vertical velocities due to friction 
are generally larger than those due to the 
mountains. The frictional vertical velocity 
over the Pacific Ocean is comparable with o, 
in order of magnitude. 

Figures 16 and 17 show the distribution of 
vertical velocity and divergence including all 
four terms in (6.15). Comparing these figures 
with figures 10 and 11, respectively, it is seen 
that OB is greatly modified by the three other 
terms. 

vertical ve f ocity and divergence. 

7. General Conclusions 

It has been shown in the preceding sections 
that some gross features of the distribution 
of the mean thermal field relative to the mean 
height field can be described by a linearized 
form of the vertically integrated vorticity 
equation. An estimate of a typical nieridional 
scale for mid-tropospheric disturbances ob- 
tained from 500 mb data for January 1959 
shows that the scale in the average for middle 
latitudes varies between 3,000 and 6,000 km. 
A com utation of the field of vertical motionin 

the normal maps for January shows that the 
effects of horizontal vorticity advection, fric- 
tion, and mountains cannot be neglected 
compared with the p-effect even for the plane- 
tary scale. 

a zona P cross section along 50' N based upon 
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Fig. 14. The vertical velocity due to friction o as a function of longitude at 50' N. f 
January normal maps. 
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Fig. I S .  The vertical velocity due to  mountains as a function of longitude at 50" N. 
January normal maps. 
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Fig. 16. Distribution of vertical velocity computed from eq. (6.15) in a zonal cross section at 50’ N. 

~ --- V.” ““,I.  b-.r‘ 
~ 

eb 

Fig. 17. Distribution of divergence computed from the vertical velocity in fig. 16. 
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