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Abstract 
As an elaboration of recent studies by BUBLL (1954, 1957) andJENKINsoN (1956), the relation 

between the standard deviation of contour height and the vector standard deviation of geo- 
strophic wind velocity is formulated, both for point values (variations in time) and for chart values 
(variations in space). The relation between wind and contour variances for a simple schematic 
contour pattern is examined, from the point of view of both space and time statistics. 

The relationship between the space variance of contour height (S*) and the space variance of 
the geostrophic wind (ae) was evaluated over the Arctic (north of about 60' N) at the Soo-mb 
level. A high degree of correlation was found to exist between these two quantities, although 
the form of the relationship (a* proportional to S) did not agree with the results of previous 
studies (BUBLL, JENKINSON, 1oc.cit.) of time variances. However, a reanalysis of such data for 
northern latitudes yielded results virtually identical with those of the present study. 

In both cases, the standard error of estimate was too large to enable one to calculate accurately 
the wind variance from the height variance for synoptic purposes, but the relationships do allow 
climatological estimates (seasonal, etc.) to be made of the mean kinetic energy and of the size and 
amplitude of the dominant wave systems. 

I. Introduction 
KLEIN (195 I) was one of the first to recognize 

that there must exist a high correlation be- 
tween the variability of pressure and the 
variability of pressure gradient or wind. This 
correlation has recently been investigated, both 
theoretically and numerically, by JENKINSON 
(1956) and by BUELL (1954, 1957). Earlier 
studies have considered only standard devia- 
tions at a oint; here we shall treat the problem 

simultaneously, although the tests on actual 
data to be reported refer specifically to space 
variability. 

of variabi 7. ity in space and time, separately and 
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2. Relations between space and time 
variances 

The statistical measure of variation most 
commonly employed is the variance, or its 
square root, the standard deviation. We may 
discuss variation in time, at a point, variation 
in space, at a given time, variation in space 
for time-meaned quantities and variation in 
time for s ace-meaned quantities. There are 
thus four Xifferent standard deviations which 
may usefully be investigated, and we shall 
here carry out such an analysis, both for the 
vector standard deviation of geostro hic wind 
velocity (represented by u with a de P ining sub- 
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script) and for the standard deviation of 
contour height (represented by S with a similar 
set of subscripts). It will be convenient to use a 
horizontal bar to denote a time average and 
square brackets to denote a space average; u 
and u will denote the x- and y-components 
of wind velocity (more strictly, of geostrophic 
velocity). 

Consider first the vector standard deviation 
of wind velocity for variation in time (at a 
point), a4. 

d = d , + a : , = F -  v, (1) 

where V, denotes the resultant velocity, the 
absolute value of the time-mean vector velocity. 
EADY (195 I) pointed out that was a quantity 
of fundamental importance in dynamic cli- 
matology, being a measure of the turbulent 
(large-scale, chiefly) kinetic energy. We shall 
return to this concept a little later. 

Consider now the vector standard deviation 
of wind velocity for variation in space (at a 
single time), a,. 

a:=a&+a:,=[V2] - V:, (2) 

where V, denotes the space-mean vector wind 
velocity. 

Consider now the vector standard deviation 
of space-mean wind velocities (in time), u2. 
For a large area, this will be a relatively small 
quantity. 

d=VV,2- V;s, ( 3 )  

where V, denotes a s ace and time vector- 

Consider finally the vector standard devia- 
tion of time-mean wind velocities (over an 
area), as. 

resultant mean wind ve P ocity. 

a:= [V;] - Va. (4) 

Taking the s ace average of (I), and the 

(4), one may express the total variance of 
vector velocity in the alternate forms 

time average o P (2), and introducing (3) and 

[vz] - v;,=~++=c4++a3. ( 5 )  

[VZ] is simply equal to twice the space and 
time average of the kinetic energy per unit 
mass. For a temperate-latitude area, the term 
V:b in ( 5 )  will make an appreciable contribu- 

tion, but this will not be so for an area centred 
at the pole. On individual occasions for such a 
polar area, V,  would be small for quasi-zonal 
flow or for a quasi-symmetric cellular pattern; 
it would have an appreciable value, in fact, 
only with a pronounced trans-polar circula- 
tion. 

Exactly analogous relations can be written 
down for the standard deviations of contour 
height, here denoted by S,, S,, S ,  and S,. 

g= [ 2 2 ]  - [ Z p ,  

s; = [212 - Vl2, 
Si = [Z2] - PI2, 
s,a = 2 2  - z2. 

_ -  

Once again the total variance, in both space 
and time, of contour height is 

[zzl - El2 = q+ s; = S: + [S,a]. (7) 

3. Relations between velocity and height 
variances 

Let us consider a Cartesian grid, with grid 
spacings of Sx and Sy. For the time being, 
at least, we shall neglect variations over this 
grid of map magdcation and of Coriolis 
parameter (f= ZSZ sin @, where 52 = earth's 
angular velocity and @=latitude). Let us 
denote two immediately adjacent grid points 
by the subscripts p and 4 (separated by either 
Sx or Sy). Let us first analyze the problem 
treated by JENKINSON (1956) and BUELL 
(1954, I957)-that of finding a: in terms of 
S,,. Making the geostrophic assumption 
(denoting the ratiojg by A), we obtain from 
(I)  and (6) a relation derived by JENKINSON 

( 1956) 9 

A2S~2d,=(sp,Sp1J2+ Z S p , S a , { I  -r4(+))* (8) 

where r4 (Sy) denotes the correlation coefficient 
between 2, and Za (a time correlation). 

In terms of derivatives, the approach adopted 
by Bueu (loc. cit.), (8) is equivalent to 

where we have invoked 1'Hospital's Rule for 
the final term. 
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Differentiation of the final set of (6) with 
respect to y and substitution into (9) give the 
relation 

where R, (2, u) indicates the correlation 
coefficient (in time, at a point) between contour 
height and the x-component of the velocity. 

An analogous relation can be derived for 
a,,, which, in combination with (IO), gives 

124 = 

According to JENKINSON (1956), the coe6- 
cient of S: in (I I) is a proximately a universal 
constant in space an! time, throughout the 
troposphere. Without necessaril accepting this 
view (which we shall later s x ow to be of 
dubious validity), we may write (11) in the 
form 

Com utations by BUELL (1954) of k , 2  (see 
his fPgures 7, 8 and 9) indicate systematic 
geo ra hical variations of this quantity, quite 
mar f! e in polar areas, but rather less variation 
between troposphere and stratosphere than 
claimed by JENKINSON (1956). 

The relation between 4 and S: (areal 
variances) can be found by carrying out the 
above analysis with space means rather than 
time means. Assuming that sin 4 has a 
small range or is only weakly correlated with 
S1 or u,, one obtains 

[A21 a: = 

where the subscript I indicates a correlation 
over space, rather than in time. Without im- 
Tellus XI1 (1960). 3 

lying a constancy for the ratio of variances, 
i t  us set 

If k ,  were invariant in space and time, then 
one would expect k ,  to have similar properties 
(and a similar value). The explicit formula- 
tions of k ,  and k ,  (see (11) and (13)) do not 
in themselves lend much sup ort to such 
beliefs, nor do the indicate w K at would be 
the implications orsuch a quasi-constancy if 
real. Accordingly, it was decided to investi ate 
a very simple contour model, to provi t e a 
useful basis for the discussion of various sets 
of experimental data. 

4. Variance relations for a simple contour 
pattern 

Let us now evaluate k: for a simple cellular 
type of contour pattern, defined by 

Z =  A sin px + B sin vy + C, ( IS )  

where p=2nlL, and v=2n/LU. L, and L, are 
wavelengths, and A and B amplitudes, in the 
x- and -directions, respectively. For simplicity 
we sd i m a r  that a given ma 
integral num er of waves (or ce lf ular systems) an 
in both coordinate directions so that it is 
adequate to average any parameters required 
over one wavelength in each direction. 

For this contour pattern, 

In the case that L, = L, = L, 

If L, + L , we may define L as the effective or 
weighted( wavelength b the above relation. 
This effective wavelengtl, L, is closely related 
to the “radius” of contour systems, R,, intro- 
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duced by BUELL (1954,1957) through the extra- 
polation of 3% ( x ) / & ~  to a zero correlation at 
the rate observed at x = 0. It may be shown, 
in fact, that 

L = nRh = 27dl111, 

where m is the characteristic “wave number” 
utilized by THOMPSON (1957) in his inter- 
retation of the meaning of the quasi-constant %, deduced by JENKINSON (1956). Incidently, 

with the particular contour system envisaged 
here, the correlation would actually drop to 
zero at a distance L/4. Thus, from (19) and 

(4 

(4 9 

In order to compute variances applicable to a 
oint (time variances), one may assume a 

%xed speed and direction for contour system 
motion. It then follows directly that (16) 
applies equally well to S42, (17) to oP2 and 
(18) and (19) to k42. Thus, for a reasonably 
homogeneous area for which space and time 
samphg are essentially equivalent, the two 
sets of statistical variance arameters should be 
numerically very s i d r .  Contour-height 
variance, from (16), will be a direct measure of 
the root-mean-square “system amplitude”, 
and the variance ratio, k, from (IS), will be a 
direct measure of the effective “system wave- 
length”. 

It can be seen from (19) that k would be 
approximately constant from one map to 
another (k,) or from one point to another 
(k4) only if the effective wavelength remained 
the same, regardless of amplitude (i. e., in- 
tensity) changes. Thus, one might expect 
rather similar ranges of k from one season to 
the next in regions where the “size” of contour 
systems does not vary greatly from one season 
to another. Within any given season, it would 
be unreasonable to expect the effective wave- 
length to remain constant. In fact, one should 
expect a tendency for amplitude to increase as 
wavelength increases, leading to a more 
rapid increase of the intensity (and hence 
variability) of the contour-system than of the 
wind regime. In such a case, k would decrease 
as S increases. 

One may adduce evidence for this latter 
belief from the quasiisotropic nature of wind- 
component variance, first demonstrated by 

Brooks et al. (1950) for variances in time, at a 
point. For the schematic contour model re- 
presented by (IS), uu, = uvl implies that BY = 
Ap, or that B/L,.=A/L,. The empirical evi- 
dence for isotropic wind behaviour im lies 
that the ratio of am litude to wavelengtE in 

constant and thus one would expect that re- 
adjustment of wavelength to amplitude changes 
(or vice versa) should be such that the ratio 
itself would not chan e greatly. Undoubtedly, 

day (or of u4 with S, from point to point), is 
rather complex so that it would not be fruitful 
to examine more realistic contour models. 
Instead, one should carry out analyses on the 
actual atmosphere, and results of such analyses 
will be presented in the next two sections. 

5. Experimentd testing of variance relations 

From the considerations of the previous 
section it appeared likely that the height 
variance (in space) of a pressure surface and 
the geostrophic wind variance would be 
significantly correlated but that the regression 
coefficient for a simple linear regression would 
not prove to be a universal constant. Although 
the concept is quite general (i.e., holds wherever 
the geostrophic assumption is valid), it was 
tested in the Arctic at 500 mb because the basic 
data were already available from a previous 
study. 

The experiment consisted simply of com- 
puting the height and geostrophc wind 
variances for a number of sample days, and of 
determining the nature of their correspondence 
and the accuracy with which the wind variance 
could be estimated from the variance of height. 
A detailed account of the testing rocedures, 

(GODSON and MACFARLANE, 1958). It should 
be noted that a close relationship would imply 
that the space-mean kinetic energy could also 
be estimated from contour-height variance 
(which latter parameter could then function 
as a highly efficient and readily calculable 
circulation index), since, from (2)  and (I4), 

the two component 8. lrections tends to remain 

the actual variation o B u1 with SI, from day to 

with data tabulations, has appeare dp elsewhere 

The source of data for this experiment was 
the 500-mb (0300 GMT) synoptic charts for 
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Sample 
Value 

1955 drawn by the Department of Transport 
Arctic Forecast Team at Edmonton. In connec- 
tion with another project (HARE, GODSON et al. 
1957), arrays of contour height had been ab- 
stracted from these maps on a 13 x 13 point 
grid extending from the pole to 60" N (on the 
average). The values of S ,  for these arrays had 
also been calculated and only crl had to be 
computed. To satisfy the differential relations 
of (13), [sin +] cr, was formed for grid sizes of 
6, 4,s and 28 (6x = 6y = d), and then extra- 
polated analytically to a zero grid size. 

The sample used in this study consisted of 
sixty days chosen to include all the seasons 
and the complete range of S,. Because of the 
deliberate inclusion in the sample of the ex- 
treme values of S,, a weighting factor had to 
be introduced so that the frequency distribution 
simulated the actual distribution of S1 for 195s. 

Scatter diagrams were made showing the 
relation between [sin+] ol and S,, and between 
k, and S,. Neither plot appeared to represent 
a linear correlation, but before attempting to 
fit a non-linear regression equation the data 
were converted to natural logarithms as it was 
thought most probable that the errors in 
computing S, and [sin $1 cr, were proportional 
to their magnitudes. 

The new scatter diagram of the converted 
standard deviations (fig. I) seemed to indicate 
a linear relationshp between the two quantities 
and a straight line was fitted to the data, of 
the form 

5% Confi- 
dence Limits 

Lower 1 Upper 

In [sin +] u1 = a + b In S,. (23) 

Sample 
Value 

.. 

5% Confi- 
dence Limits 

Lower1 Upper 

SWt, 

x x )  m 900 yx)600mBoo900 
10- 

I00 

Fig. I. Relation between contour-height standard devia- 
tion (S) and vector wind standard deviation (a) at 500 

mb at high latitudes (on logarithmic scales): closed 
circles-this study, open CirCleS-JENKINSON (1956) and 

crosses-BWELL (1957). 
Tellus XI1 (1960). 3 

Then, from (14), 

k, = e" St-1. (24) 

The statistical parameters pertaining to the 
regression equation (23) are shown in Table I. 

Table I. The linear regression of In [sin 61 u1 on 
In S, 

Statistic 

Regression Coefficient b I Regression Intercept a I Correlation Coefficient v 

Thus, from (24) 

k, =5.860 y 5 9 7  
1 '  

These results differ marked from those of 

cit.) in which b was assumed e ual to unity 
(so that k, became a consm?). Jenkinson 
com uted k, directly from eq. (12), whereas 
Bue ip computed both his regression coefficient 
and intercept but found that the latter was 
approximately zero. Because of the apparent 
discre ancies between the results, it seemed 
desiragle to combine and reanalyse the data 
that Bueu and Jenkinson had presented in 
their papers. 

6. Comparison of space and time variances 

As it was felt that any valid comparison of 
these space and time statistics should be made 
with overlapping data, only the values of cr4 
and S, at 500 mb and from the northern sta- 
tions ($5  45') were used. The analysis 
described 111 section 5 was repeated and the 
results are given in Table 2 (see figure I for 
data points). 

the previous studies (Buell an d Jenkinson, loc. 

Table 2. The linear regression of In (sin d)a, on 
In S, 

Statistic 

I Regression Coefficient b I 0.426 I 0.300 I 0.533 I 
Regression Intercept 
Correlation Coefficient Y 0.788 0.578 0.895 

a I 1.580 I 1.078 I 2.081 I 
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The confidence limits are somewhat wider 
than before (smaller sample) but otherwise 
these values are similar to those obtained from 
the space variances (see Table I). 

Although the high correlation between the 
space variance of contour height and the 
space variance of the geostrophic wind is the 
first conclusion of this study, it is not an 
unexpected one in the light of the underlyin 
theory and the results obtained by Bue 
and Jenkinson; on the other hand, the most 
interesting result is the nature of the rela- 
tionship between these two quantities. 

The general form of the dependence of 
wind variance on contour height variance 
can be expressed as 

(27) 
which is applicable to either the space or time 
values. At least a superficial explanation of 
this proportionality can be made on the basis 
of the contour model discussed in section 4. 
That is, those pressure patterns in which 
there is a pronounced coupling of the wave 
amplitude with the wavelength dominate over 
the patterns of variable amplitude but more 
or less constant wavelength. This coupling 
would most probably occur in long-wave 
patterns, such as those of the circumpolar 
westerlies, rather than in short-wave hstur- 
bances which are more likely to be of roughly 
uniform size though of widely varying in- 
tensity. 

Moreover, it appears from the similarity of 
(25) and (26) that the space and time statistics 
are both sampling the same information, and 
the form of (27) suggests that this information 
is concerned with the largest features of the 
pressure patterns. Although this conclusion 
(k, = k4) had appeared plausible, the empirical 
evidence seemed to be against it until the 
time statistics were reanalysed. 

Naturally, even in a region of long-wave 
disturbances, the ratio of amplitude to wave- 
length would not be constant from day to 
day or from place to place; hence the con- 
siderable scatter of points in figure I is only 

*to be expected. That the standard error of 
estimate of o4 is noticeably larger than that 
of o1 is probably due, in part at least, to the 

8 

a d b ,  0.3 5 b 5 0.5, 

location of the samples. The space grid is 
embedded at the centre of the circumpolar 
vortex, which is made up of a core of small 
cellular disturbances surrounded by long-wave 
patterns; hence the values of S,, o, and k, 
probably represent some sort of weighted 
average of the values that would have been 
obtained by sampling the two regimes separa- 
tely. This might tend to damp down the 
range of residuals about the regression line. 
As opposed to this, regional differences would 
be emphasized by point sampling in time. 
BUELL (1954) has shown that in fact there are 
considerable variations in the size of ressure 
systems from one area to another. T x us the 
time sample used here is somewhat unsatis- 
factory because the stations not only tend to 
be near centres of action but they do not 
sample more than the fringe of the space rid 
(GODSON and MACFARLANE, 1958, fig. 107. 

In the face of these possible sources of diffe- 
rence it is encouraging to find that there is no 
significant difference between the relationships 
in space and time of the standard deviations 
of height with the standard deviations of 
wind. This has a bearing on the remark by 
BUELL (1957) that the statistical theory of 
turbulence (BATCHELOR, 1953) leads to the 
relation : 0% S. Since homogeneous turbulence, 
by definition, is such that s ace and time 

think it possible to consider the large scale 
features of the 500-mb circulation as being 
two-dimensionally isotropic homogeneous tur- 
bulence. However, it is pertinent to note that 
the isotro ic turbulence prediction (02crS) is 
formulate! for a system in which Coriolis 
forces can be ignored. This is clearly not true 
in the resent case, so that the apparent agree- 
ment i! etween the o-S relations in the two 
cases should be regarded as largely accidental. 

Equations (25) and (26) are of considerable 
climatological value. From these relations it is 
possible to obtain estimates, albeit crude, of 
the standard vector deviation of the wind, 
the mean kinetic energy and the r.m.s. ampli- 
tude and effective wavelength of dominant 
pressure systems, all from an easily obtained 
parameter-the variance of contour height. 
For not only can S1 be readily computed from 
constant pressure charts, but it is a standard 
parameter developed in all types of numerical 
specification techniques. 

sampling give identical res J ts, one might 
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In the year 1955 (using thewadsworth speci- 
fication data described in section 5 )  the annual 
mean value of S ,  (i.e., the r.m.s. amplitude 
from (16)) was almost 500 ft., representing a 
mean radius of some 750 n. miles (12%" of 
latitude). This corresponds well with the mean 
size of Arctic pressure systems obtained by 
direct measurement from Soo-rnb charts. 
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