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Abstract

It is shown that if the variables employed in a least squares regression analysis are subject to
random errors of measurement, the expectation values of the partial regression coefficients, of
the partial correlation coefficients and of the multiple correlation coefficient may all differ from
those which would have existed, had no errors been present. If there is no intercorrelation
between the errors of different variables, random errors in a given variable always reduce the
numerical expectation values of the corresponding partial regression and correlation coefficients.
Coefficients corresponding to other variables may, however, be influenced in either direction
depending on the intercorrelations between the variables. The expectation value of the multiple
correlation coefficient isreduced by errors in any variable. The general case, in which the errors
of different variables are intercorrelated, has also been briefly discussed.

The problem of determining the atmospheric effects on the cosmic radiation is then discussed.
It is shown that some previously unexplained discrepancies between empirical and theoretical
estimates, and also between empirical estimates obtained from the study of day-to-day variations,
and such obtained from the seasonal variations of the cosmic-ray intensity, are probably due to
systematic effects of random errors in the aerological data employed in the regression analysis.

Estimates of error variances and covariances of aerological data from the upper troposphere
and the lower stratosphere have been obtained by analysing differences between data from two
closely situated stations on Spitzbergen. They have then been used to obtain corrected estimates
of the cosmic-ray atmospheric effects, which are now found to agree fairly well with the theoret-

ical ones.

I. General considerations

1. Introduction

A least squares regression analysis is fre-
quently used when a possible linear relationship
between two or more measured quantities is
investigated. The simplicity of the method is,
perhaps, the main reason why it is so com-
monly used. It does not appear, however, to
be generally appreciated that random errors
in the independent variables will not only
increase the variances of the correlation and
regression coefficients, but will also change
their expectation values.
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This effect is very easily seen in the case of
only one independent variable. The relation
between the measured values x; of the in-
dependent variable and x, of the dependent
variable is then given by

xog=byx +& (1)
where b, is the regression coefficient and £ is
the residual in the regression equation between

the measured quantities. If the measurements
are subject to random errors we may write

Xi = x§ + & (2)
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where x; is the true value of x; and ¢; is the
random error of measurement, the corre-
sponding regression equation between the true
values being

xo=bixi+ & (3)

For the sake of simplicity, but without loss of
generality we may assume that all variables
have zero mean.

We shall assume that the errors are always
random with respect to the true variables, i.e.

g =0 (4)
for all i and j, which implies that
Xij = X7, + iy (s)

A bar denotes the mean value of an infinitely
large sample.

The expectation values of the regression
coefficients b, and b; are then

b= 22 (6)
X1
and
X%, + £y
b= Tt )
x2+é&d

For the corresponding correlation coefficients
they are

R'= ——)1 (8)

and

X1 + Eg8y
R= 0X1 0o%1 _ (9)

[+ €) (2 + D]

From these equations it follows that the expec-
tation values of the regression and correlation
coefficients are always affected by random
errors in the independent variable x,. Regard-
ing errors in the dgpendent variable, the corre-
lation coeflicient R is, of course, always in-
fluenced, whereas the regression coefficient bj is
affected only if this error is correlated with the
error in the independent variable. We see
that b; may be smaller or larger than bj,
depending on the correlation which exists
between &, and ¢,. Even for the correlation
coetficient it may happen that R > R’, which
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is rather surprising as one intuitively expects
that the presence of errors would invariably
reduce the magnitude of this statistical pa-
rameter. The case of R> R’ can, however,
occur only in the rather unusual situation
when the correlation between the errors is
stronger than between the true variables
themselves.

If the errors are not correlated with each
other, i.e.

(10)

it is easily seen that the expectation value of R
is always less than that of R’, and that the
numerical expectation value of b, is always less
than that of b;. This effect of random errors
of measurement on the correlation coefficient
was first noted by SPEARMAN (1904).

ggj =0 for all ],

2. Several variables with uncorrelated errors

We shall now consider regression equations
with several independent variables. As these
variables may well be correlated with each
other, they are often only formally independ-
ent. If the errors of the different variables are
also correlated with each other, the situation
becomes so complicated that very few con-
clusions can be drawn regarding the effect of
the errors on the regression and correlation
coefficients. However, in many (and perhaps
in the majority) of the cases of practical in-
terest the errors are not correlated with each
other. We shall, therefore, begin with a discus-~
sion of this restricted case. On the other hand,
the regression between cosmic-ray intensity
and atmospheric conditions, which is to be
discussed in the second part of this paper,
presents a case in which the errors are inter-
correlated.

Let x, be the dependent variable, and «x;,
i=1,2,...n be the “independent” ones.
Let us denote by A the determinant with
elements

ai; = XiXj, iZO, I,....n, and

(11)

and by Aj; the corresponding cofactors. The
empirical multiple regression coeflicients are
then given by

(12)

bi = - Aoi/Aoo:
Tellus XI (1959). 4
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the corresponding partial correlation coeffi-
cients by

12 = A% [ (Agedii), (13)

and the multiple correlation coefficient by
R? =1 - Al(agoAoo)- (14)

The corresponding true values b}, r; and R’ are
obtained by substituting for a; the true
covariances

=, (13
based on the true values of the variables.
For the variances of errors we shall find it

convenient to introduce the notation e2=¢;.
In order to see how the errors influence the
expectation values of regression and correla-
tion coefficients, we first note that in the
restricted case under consideration we have,
according to (5) and (10), that

(16)

It | dee = 1,
whereas
da;;| e, = 0 if either i # k and/or j#£ k. (17)

Eq. (16) holds, however, also in the most
general case, but not (17). By means of (16)
and (17) we now find that

QA [ e = A

(18)
and

DA | et = (Aij)iws (19)
where (Aj)ee denotes the cofactor of the
element aye as it appears in the determinant
Ay If ap is not an element of Ay, (A;)ue is
identically zero, and it should be noted that
this occurs whenever i or j equals k.

If we differentiate (12) we find, by means

of (18) and (19), that

obi _ , (Ago)rk _ (Aoi)kk]
981 =~ b:[ A_oo_ _——Aoi . (20)

If k=0, we have (Aoo)kk=(Aoi)kk=0) and
thus 9b;/degg=0. Consequently, the expecta-
tion values of the regression coefficients are not
influenced by errors in the dependent variable.

Tellus X1 (1959), 4
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If k=i we stil have (Ag)we=0, but as i
cannot here be zero, (Agg)re # 0, and we get

(Ago)it

Ago

I (7b,
b[ 96,','_ (21)
As (Ag)ii and Ay, are both positive definite
we conclude that random errors in an inde-
pendent variable always tend to reduce the
numerical value of the corresponding regression
coefficient. However, as nothing clgcﬁnitc can
be said about the sign of db;/Jex when o #k #i,
the regression coefficients corresponding to
other independent variables may be influenced
in either direction depending not only on the
intercorrelation between the “independent”
variables, but also on their correlations with
the dependent variable. Consequently, if
several variables contain random errors, no gen-
eral rule can be formulated regarding the com-
bined effect of these errors on a given regression
coefficient.
Differentiating (13), we obtain

ar; ri [(Agoer | (Aii)ir (Agi)xr
"2 TTA Ay ]
(

%I; 2 Ago A

22)

If k=0 the first and the third quotients within
the brackets vanish, but as i cannot be zero the
second term remains, and we find that (1/r;) -
- (9ri[deg) is always negative. Consequently,
errors in the dependent variable reduce the numer-
ical expectation values of all partial correlation
coefficients. If k=i only the first term remains,
and we find that also (1/r)) (9r:/7e;) is nega-
tive, whereas if o #ksti the sign depends on
the correlations between all variables. We thus
see that random errors in an independent vari-
able also tend to reduce the numerical value of
the corresponding partial coefficient, whereas the
expectation values of the other partial correla-
tion coefficients may be changed in either di-
rection.

Finally, differentiation of (14) gives for k# o0

2R

IR (Ago)e Apr A
dewe —Ao_o_ l:“oo(Aoo)kk - aggAge
= — [(Aoo)ui] Ago] [(1 — Ri¥) - (1 - R®)},
(23)
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where R, denotes the multiple correlation
coefficient which would have been obtained
without the variable x,. As the correlation
cannot improve if one of the independent vari-
ables is discarded, we conclude that IR /e <0
for all k0. (It might have been zero if x, had
not been correlated with x;, but then there
would have been no need for x, as an inde-
pendent variable.) Consequently, random er-
rors in any independent variable reduce the
expectation value of the multiple correlation
coefficient. It is obvious that the same applies
to errors in the dependent variable when these
are not correlated with the errors in the inde-
pendent variables.

If the independent variables are not inter-
correlated, the situation is much simpler. We
then have a;=0 whenever if(i - j) #0, and
find that (12), (13) and (14) reduce to

b; = ay; ] a;;, (24)
ahi
r.z = —— s 2
" agoai [1 ~ Tat;] (ag08;)] )
J#0,1

and

R =T a%/{ageaii). (26)
ito

We thus see that b; can only be influenced by
&, whereas r; and R are still influenced by
random errors in any variable.

3. Several variables with correlated errors

In the more general case when the errors in
different variables are correlated and (10) is
no longer satisfied, (18) and (19) do not hold
and the rules formulated on the basis of the
equations (20), (22) and (23) no longer apply.
The following can, however, be said:

A. If, but only if, the errors in the dependent
variable are correlated with the errors in
one or more of the independent variables,
the expectation values of all regression
coefficients will be influenced also by the
errors in the dependent variable, but
not necessarily in such a way as to reduce
their numerical values.

B. The numerical expectation value of a
partial regression or correlation coefficient
is no longer necessarily reduced by errors
in the corresponding independent vari-
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able, nor will errors in the dependent
variable always reduce the numerical
expectation values of all partial correla-
tion coefficients.

C. Even the multiple correlation coefficient
may have its expectation value increased.

It is not difficult to convince oneself about
the truth of the statements (A) and (B), but
(C) is at first sight rather surprising. It can,
however, be shown that the residual variance
has still an absolute minimum when random
errors of measurement are absent.

The residual & of the empirical regression
equation

Xg = Eb,-x,-+§ (27)
i#o
can be written in the form

E=8+(eo— Thiei) + T (bi - b)) xi,
i#0 {#0

(28)
where & is the residual of the regression equa-

tion
(29)

xg=Ebixi+ &
i%zo
between the true variables. As &xi=o0 for

all i 0 and, according to (4), Ee;=o0 for all i,
we find that

E2=E7 4 [gy— L biei]2 + [ (i - b)) xi]2,
i#0 1#0
(30)

which clearly demonstrates that in all cases
the residual variance has an absolute minimum
at zero errors.

If we express the residual variances &% and
&2 by means of the respective multiple correla-
tion coeflicients and total variances of the
dependent variables, and use the relation

xgt=x2 -2, we get from (30) that

(R% - RO T = - (x - RY) A+ [or =St +
i%o
+ [E (b; - b;) xi]2. (31)
If £4¢; =0 for all i+#0, (31) reduces to

(R? - R = R%+ TE b+
i#0
+ (X (b - b)) x)2.

i{#0

(32)

Tellus XI (1959), 4
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From the equations (31) and (32) we can now
draw the following conclusions:

A’. If the errors in the dependent variable are
either absent or uncorrelated with the
errors in the independent variables, the
multiple correlation coefficient has an
absolute maximum at zero errors. This
does not, however, imply that all partial
derivatives of R with respect to the error
variances will be negative or zero every-
where in error space.

B’. If the errors in the dependent variable are
correlated with the errors in the independ-
ent variables, R may in special cases be
greater than R’, provided that the correla-
tion between the errors is stronger than
that between the true variables. It would,
for example, happen if the partial regres-
sion coefficients between the errors are
approximately equal to those between the
corresponding true variables, as the third
term of (31) is then close to zero and the
sccond term approximately equal to

(1 - R?)e2, where R, denotes the mul-
tiple correlation coeflicient between ¢, as
dependent variable and the other errors
as independent variables. It would also
happen if all error variances are large
compared to the variances of the corre-
sponding true variables, as the empirical
regression coefficients will also then be
approximately equal to those between
the errors, again making the first and
second terms of (31) dominant and their

sum approximately equal to (R? - R'2) &2,

Even though peculiar cases such as those
discussed in (B’) may be very rare in practical
applications, they serve to demonstrate how
careful one should be when judging the
quality of empirical relationships established
between variables with unknown errors.

The important consequence of these con-
siderations is that when some relationship is
e;(lpectcd to exist between two or more physi-
cal quantities for theoretical reasons, empiri-
cally determined regression coefficients are
never strictly comparable to the theoretically
estimated ones. The expected discrepancies
may, of course, be small or even negligible if
the measurements are very accurate, but it
Tellus XI (1939), 4
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should never be forgotten that significant and
otherwise unexplainable discrepancies may
arise in this way. In the secondp part of this
paper we shall present what we believe to be
such a case.

It should especially be noted that if some of
the “independent’ variables are very strongly
correlated with each other, the empirical
regression coefficients may be widely different
from the true ones if one of those variables
contains even relatively small errors.

However, if we can in some way or other
obtain estimates of the variances and covari-
ances of errors which we know to be present
in empirical data, we can use eq. (5) to compute
true variances and covariances of the variables.
Having thus removed the influence of the
errors, the true regression and correlation
coefficients can be found. This we shall now
try to do in the case of the atmospheric effects
on the hard component of the cosmic radiation.

II. Application to the cosmic-ray
atmospheric effects

1. Introduction

As an application of the preceding general
considerations we shall discuss the problem of
determining the regression coefficients rep-
resenting the atmospheric effects on the
hard component of the cosmic radiation at
sea-level. This component is usually defined
as that part of the radiation which is able to
penetrate 10 cm of lead. It consists of nearly
only pu-mesons, and their number depends on
the atmospheric conditions. The intensity of
the hard component is usually correlated
with the barometric pressure B at sea-level,
the height H, of the 100 mb level and the
temperature T, at or near that level. The
barometer effect is mainly due to the absorp-
tion of the radiation in the atmosphere. Tﬁe
correlation with the height of the 100 mb
level is due to the dependence of the disinte-
gration probability of the u-mesons on the
distance between their production levels
and sea-level, whereas the origin of the
(positive) temperature effect is more com-
plicated.

The interpretations of these effects have been
discussed by TreraLL (19552, 195sb and
1956), and theoretical estimates of the regres-
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Table 1a. Estimates of error standard deviations
for the Finnish radiosonde

{(RaaB and RODSKJER 1950)

Dawton and Ellret (1953) _J

P -

Meteorological Isobaric levels
element 350 mb—150 mb = 150 mb

Temperature 0.57°C 0.61 °C

Pressure..... 6.3 mb 4.5 mb

Table 1b. Error standard deviations for night
twin soundings with the Finnish radiosonde

(Ross1 1952)

T T

T U U T T
150 200 300 300

T 1 7 i L
23 57 10 1% 20 30 50 o 100

Fig. 1. In this figure are plotted theoretical estimates and
empirical values of the height coefficient belonging to
the set of independent variables B, H; and T,, as func-
tions of the amount of absorbing material in the cosmic-
ray recording apparatus. The recordings in Manchester
were performed with about 10 cm of lead.

sion coefficients have been calculated and
compared with empirical results. It was then
found (TRrEFALL 1956) that the empirically
determined values of the height coefficient
(the partial regression coefficient with respect
to H,, often aio called the negative tempera-
ture coefficient) had usually too small nu-
merical values to be compatible with the
theoretical estimate. This is clearly shown in
Figure 1, where curve B gives the theoretically
expected dependence of the height coefficient
on the amount of absorbing material in the
meson recorder. At that time no satisfactory
explanation could be found for the discrepancy,
but it now appears that it is probably due to
errors in the aerological data which have been
used as independent variables in the regression
equation for the determination of the atmos-
p?xeric effects.

2. Estimation of errors in aerological data

The observational errors in radiosonde data
have been studied in later years by several
authors. Some of their results are given in
Tables 1 a, b and c. RaaB and RoDskjEr (1950)
used twin soundings, and obtained the error
standard deviations given in Table 1a. From
night soundings Rosst (1952) obtained similar
results (Table 1b). From the Payerne com-
parison of radiosondes NYBErG (1952) com-
puted the standard deviations given in Table 1 ¢

. i 1
Meteorological Isobaric levels
clement 275mb [ 162mb | 96 mb
Temperature....... 0.68°C | 0.72°C | 0.78°C
Pressure........... 4.1mb | 3.o0mb | 3.2mb

Table 1¢. Error standard deviations for the
Payerne data of 1950

(NYBERG 1952)

Isobaric levels
Meteorologicalj Radiosonde

element type 500 mb—|300 mb—
300 mb | 200 mb

T ¢ Finnish 0.54 °C | 0.86°C
emperalir€ | 411 six tested 0.47°C | 0.81°C
Finnish 5.4 mb | 5.9 mb

Pressure. . ... All six tested | 5.2 mb | 5.8 mb

for the errors in night releases. These values
are probably lower than the errors of aerolog-
ical data obtained under ordinary working
conditions, when there is less careful inspection
of the instruments and less reliable conversion
of transmitted data. In addition all aerological
records incorporate influences from small-
scale systems such as cumulus convection,
gravity waves and others. Such disturbances
are “noise” on the synoptic scale, and effec-
tively increase the errors beyond those obtained
from twin soundings.

A better method for determining the total
error. variance would be to perform simul-
taneous or approximately simultaneous sound-
ings at stations separated by a distance of the
order of 10 km. Such a pair of stations now
exist on Spitzbergen, where the Norwegian
station at Isfjord Radio and the Russian station

Tellus XI (1959), 4
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at Barentsburg are situated only 18 km apart.
If Y; and Y; denote the deviations of two
meteorological elements from their respective
mean values, we have

(33)

Yii-Yip~eir—e¢ip

and
(34)

where subscripts I and B refer to Isfjord Radio
or Barentsburg data, respectively. As there can
be no significant correlation between the errors
in corresponding data from the two stations,
we find that the error covariances of the sta-
tions are related by the equation

Yir-Yip~¢i1-¢8

&g+ e~ (Yir— Yin) (Yir - Y 5).
(35)

Putting i=j we obtain an equally valid rela-
tion for error variances.

In order to separate the error variances of
the two stations some assumption must be
made regarding their relative reliability. As
there is nothing to suggest that one station is
more reliable than the other, our best estimate
of the error covariance of a pair of meteoro-
logical elements observed at any station is,

473

according to the method of maximum likeli-

hood,
sg= = 3 (Yir= Yis) (Y- Yin)
(36)

where the summation has been performed
over the n available data. Error variances are
again obtained by putting i=j. Having thus
estimated both variances and covariances of
errors, correlation coefficients between errors
may also be computed. The results are pre-
sented in Tables 2 and 3. In order to check the
stability of these statistical parameters the data
were divided in two groups of approximately
equal sizes. The variances are apparently very
stable, as was confirmed by means of the
F-test. The correlation coefficients are not so
stable, even though none of the differences
are statistically significant at the 5 % level.
The existence of correlations between errors
is, of course, due to the fact that the heights of
the isobaric levels are not measured directly,
but are computed from records of the atmos-
pheric temperature distribution as a function
of pressure. Any error in the temperature
measured at a given pressure level will, there-
fore, contribute to the error in the heights of

Table 2. Estimated error variances for heights and temperatures

300 mb 200 mb 100 mb
Period '_2' '_2' _2 e N -
fr | ®n n et | ¢& n ed | ef n
(C%2| m? (C°? | m? (€2 | m?

17 Sept.—29 Oct. 1957 ........... 2.74 | 1743 40 5.09 | 2862 33 5.25 | 5229 19
1 Nov. 57—6 Jan. 1958 ......... 2.42 | 1991 46 4.39 | 2434 36 4.51 | 4986 17
Both combined................... 2.56 | 1898 86 4.69 | 2772 69 5.04 | 5074 36
Table 3. Correlation coefficients between errors

Errors of:
Period
H, and T, H, and H, H, and H,
17 Sept.—29 Oct. 1957 ... iiiiiniiii i, 0.589 0.766 0.728
I Nov. 57—6 Jan. 1958 ........... ivninnnn 0.495 0.508 0.252
Both combined............................... 0.560 0.628 0.465

Tellus XI (1959), 4



474

all higher levels. Only errors in the thicknesses
of not overlapping atmospheric layers are
expected to be uncorrelated. A further check
on the correlations obtained could therefore
be performed by computing -correlation
coeflicients between the errors in the height
H, of the 200 mb level and the thickness
H, - H, of the 100-200 mb layer, and
between the errors in the height H, of the
300 mb level and the thickness H, — H,. The
values obtained for the combined periods
were — 0.050 and +0.188, respectively, none of
which are significantly different from zero.

EriasseN (1954), who analysed data from
British stations, estimated by means of a
different method the error variance of the
height of the 300 mb level to be 2,092 m2.
This agrees very well with the results that are
given in Table 2, and indicates that the error
estimates in Table 2 can be used in the follow-
ing discussion.

3. Evaluation of corrected cosmic-ray regression
coefficients

After having thus obtained estimates of the
error variances and covariances of the necessary
meteorological elements, corrections were
applied according to (5) to the aerological
data used in the analysis of some cosmic-ray
records from Manchester. The errors in the
sca-level pressure records could be neglected
because their variance was negligible compared
to the total pressure variance. The aerological
data came from the Liverpool station some
50 km away, whereas the pressure data were
recorded in Manchester. As the cosmic-ray
data represented the integrated intensity
throughout a day, corresponding mean values
were used for the metcorological elements.
The daily mean of the barometric pressure
was based on 24 hourly readings, and tlge aero-
logical data on 4 radiosonde ascents per day.
Only days on which all soundings reached the
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100 mb level were used. When the corrections
for errors were applied, allowance was made,
of course, for the fact that we were using
daily mean values of the meteorological
elements.

Two periods were selected for analysis,
one from July 13th to September 11th 1950,
and another from September 1st to November
7th 1951, containing 34 and 40 useful days
respectively. The total variances of the meteor-
ological elements were quite different for the
two periods, being very low in 1950 and
rather high in 1951. This is clearly shown in
Table 4, where we have given ratios between
total variances of acrological data for each of
the two periods and our estimated error
variances. We therefore expect the regression
coefficients from the 1950 period to be much
more affected by the random errors of measure-
ment than those from 1951.

In Table 5 we have given uncorrected and
corrected regression and correlation coefficients
corresponding to three different sets of in-
dependent variables. The reasons for in-
troducing the second and third sets of variables
will be given later. It should here only be noted
that the theoretical estimates of the height
coefficient b," are nearly equal for all three
sets of variables, its numerical value increasing
only slightly as we go from the first to the
third set. The temperature coefficient by' will,
however, depend critically on the choice of
variables and is, in fact, expected to change
from positive to negative values as we go
from the first to the third set. The correspond-
ing change in b,’ is negligible.

The differences between the uncorrected and
corrected height coefficients for the 1950
period are remarkable. Even though the values
of b, obtained with the three different sets
of variables are on the average only about
60 % of the corresponding theoretical values,
the corrected coeflicients by’ agree very well

Table 4. Ratios between total variances and estimated error variances for the Liverpool
aerological data

% Variable

| Period

| I, H, H, H, H—H, H,—H,
I050. . v ennnnnn 5.6 2.1 I1.9 2I.2 6.4 6.6
{13 SR 11.4 18.7 45.0 58.8 10.3 11.0

Tellus XI (1959), 4
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Table 5. Regression and correlation coefficients for cosmic-ray atmospheric effects
Uncorrected Corrected
Variables Period b, by b R by by’ by -
Yo/km| % /km %/°C % /km| % /km %/°C

B H. T 1950 |—I.46}—3.48] - o0.079 0.849 | — 1.37[— 6.38] 4 0.067 0.860
* o0 01 1951 |— 0.84]—5.95| -+ 0.116 0.966 | — 0.80|— 6.28| <+ o0.124 0.971
B, Hy, (Hy—H,) 1950 |— 1.34|— 4.13] — 0.003* 0.865 |— 1.25|— 6.70] — 0.059* 0.875
1951 [— 0.86{— 6.00] -—o0.032* 0.961 |— 0.83}]— 6.27] —0.035* 0.965
B, Hy, (Hy—Hy) 1950 |—I.15}—4.72| —o.010* 0.870 |— 1.08|— 6.99] — 0.009* 0.879
1951 |— 0.85|— 6.52| -—o.091* 0.958 [—0.85— 6.78] — o0.102* 0.963

¢ In order to facilitate comparisons between the regression coefficients b; or b," obtained with dif-
ferent sets of independent variables, all coefficients marked by asterisks have been given in terms of
equivalent variations of the mean temperature of the atmospheric layer under consideration.

with the theoretical estimate presented in
Figure 1. Further, the rather high values of
the barometer coeflicient b, obtained with the
first and second sets of variables are somewhat
reduced when the corrections are applied.
The temperature coeflicient b; obtained with
the first set seems, however, to be adversely
affected by the correction.

The results from 1951 are not quite so satis-
factory. This period is characterized by ab-
normally low values of the barometer coeffi-
cient b;, and the even lower values of b] are not
encouraging. The height coefficients b, behave
better, as they already before the correction
agree fairly well with the theoretical esti-
mates and the slight changes after the correction
bring them into very good agreement with the
corresponding coefficients for the 1950 period.
The reason why the height coefficients of
the 1951 period are so much less affected by
our correction is, no doubt, that the total
variances of the heights of all isobaric levels
are greater in 1951 than in 1950. The tem-
perature coeflicients b, have quite reasonable
values both before and after the correction.

Our correction has in all cases led to an
increase of the multiple correlation coeficient.
However, it was shown in the first part of this
paper that only under very special circumstances
would such a correction not lead to an in-
crease in the multiple correlation coefficient.
This would hold even if error vartances and
covariances were arbitrarily chosen within
the range permitted by the general laws of
statistics. The observed differences between
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R’ and R cannot, therefore, be made the
basis for any conclusion regarding the correct-
ness of the estimated error variances. The real
tests are that the variability of the regression
coefficients obtained for different periods
should be reduced and the agreement be-
tween empirical values and theoretical esti-
mates should be improved.

The view that the low empirical height
coefficients obtained by most workers may
have been caused by the large errors in the
height H; of the 100 mb level, is supported
by the fact that higher values are usually
found when monthly means of cosmic-ray
intensity are correlated with corresponding
meteorological data than when daily means
are used (BacHELET and CONFORTO, 1956). As
we expect the ratio of error variance to total
variance to be smaller for monthly means
than for daily means, such a trend in the
empirically determined coefficients is to be ex-
pected. It must, however, be remembered that
the characteristics of the day-to-day variations
of the atmospheric temperature distribution
differ from those of the seasonal variations.
As the atmospheric temperature distribution
is far from uniquely determined by the chosen
variables, differences between “seasonal” and
“day-to-day’’ regression coeflicients may arise
also in this way.

III. Conclusion

The results obtained demonstrate how
drastically empirical regression coefficients may
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be influenced by random errors of measure-
ment. Therefore, if one out of a number of
measured quantities can select different sets
of variables, which would have contained
approximately equal amounts of information
had no errors been present, one should use
that set for which the ratios between the error
variances and the true variances of the vari-
ables are the lowest.

In Table 4 we gave ratios between the total
variance and the estimated error variance of
the quantities which have been employed as
independent variables in the present anal-
ysis. It is not surprising to find that this
ratio is much smaller for H, than for H,
or H,. The decrease of the ratio with in-
creasing height is mainly due to the negative
correlation between stratospheric and trop-~
ospheric temperatures, which makes tﬁc
true variance of Hy less than the corresponding
variances for levels closer to the tropopause.
As the error variance steadily increases with
increasing height as shown in Table 2, the
relative error variance (the ratio between error
variance and total variance) increases very
rapidly as we go from the troposphere to the
stratosphere.

From the statistical point of view the height
H, of the 100 mb level is, therefore, a poor
variable. Actually, the extensive use of H, in
the study of the atmospheric effects on the
cosmic radiation seems to be somewhat fortui-
tous. It is true that Duperier, who was the
first one to correlate cosmic-ray intensity with
heights of isobaric levels, obtained a better
correlation with H; than with heights of
lower levels (Duperier 1945). However, later
results by Duperier and others (DUPERIER 1949,
WADA 1951, BACHELET and CONFORTO 1956)
do not generally show this preference for the
100 mb level, and actually indicate that on the
average the correlation is better with the 200
mb level than with the 100 mb level. This is
really not surprising, as the mean level of
meson production appears to lie near 150 mb.

Even though it might be desirable to
avoid the 100 mb level altogether and use
only data from lower levels, theoretical con-
siderations show that some information about
higher levels is also needed for a really satis-
factory representation of the cosmic-ray
atmospheric effects. This is the reason why H,
has been retained in our second and third sets
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of variables, and only the temperature T, at
the 100 mb level has been replaced by the
height of some lower isobaric level. From the
statistical point of view and according to
Table 4 these sets should certainly be better
than the first one. The results given in Table s
show that the corrected regression coeflicients
are most stable when the third set of variables
is employed, but no final conclusion should
be based on the results obtained from these
two small samples only.

The reasons why we have used the thickness
of a certain layer (the difference between two
heights) as the third variable of the second
and third sets rather than the single height H,
are threefold: Firstly, these sets of variables
are essentially the same type as the first one
because the third variable is a measure of the
mean temperature of that layer, and this
makes the comparison of regression coefficients
very easy. Secondly, we now avoid the inter~
correlation between errors which makes the
detailed study of their effects so difficult. Fi~
nally, with this type of regression equation
each term has a more direct physical signif-
icance than in the other case.

As a final remark we mention that the rela-~
tive error variance of the atmospheric tempera-
ture has a minimum near the 200 mb level,
where it is less than half the value at 100 mb
(NorpO, 1958). Remembering that the mean
level of meson production lies near 150 mb,
one would expect the barometric pressure B,
the height H, of the 200 mb level and the
temperature T, at this level to be a very good
set of variables for the representation of the
cosmic-ray atmospheric effects. The reason
why we have not tried this set is that the main
purpose of the present paper was to point out
the important effects w};ich random errors
of measurements generally may have on
empirical regression coefficients. The cosmic-
ray case should mainly serve as an example
indicating the applicabiﬁty of the mathematical
considerations given above.
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