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Abstract 
It is shown that if the variables employed in a least squares regression analysis are subject to 

random errors of measurement, the expectation values of the partial regression coefficients, of 
the partial correlation coefficients and of the multiple correlation coefficient may all differ from 
those which would have existed, had no errors been present. If there is no intercorrelation 
between the errors of different variables, random errors in a given variable always reduce the 
numerical expectation values of the corresponding partial regression and correlation Coefficients. 
Coefficients corresponding to other variables may, however, be influenced in either direction 
depending on the intercorrelations between the variables. The expectation value of the multiple 
correlation coefficient is reduced by errors in any variable. The general case, in which the errors 
of different variables are intercorrelated, has also been briefly discussed. 

The problem of determining the atmospheric effects on the cosmic radiation is then discussed. 
It is shown that some previously unexplained discrepancies between empirical and theoretical 
estimates, and also between empirical estimates obtained from the study of day-to-day variations. 
and such obtained from the seasonal variations of the cosmic-ray intensity, are probably due to 
systematic effects of random errors in the aerological data employed in the regression analysis. 

Estimates of error variances and covariances of aerological data from the upper troposphere 
and the lower stratosphere have been obtained by analysing differences between data from two 
closely situated stations on Spitzbergen. They have then been used to obtain corrected estimates 
of the cosmic-ray atmospheric effects, which are now found to agree fairly well with the theoret- 
ical ones. 

I. General considerations 

I .  Introduction 
A least squares regression analysis is fre- 

quently used when a possible linear relationship 
between two or more measured quantities is 
investigated. The simplicity of the method is, 
perhaps, the main reason why it is so com- 
monly used. It does not a pear, however, to 

increase the variances of the correlation and 
regression coefficients, but will also change 
their expectation values. 

be generally ap reciated il at random errors 
in the indepen B ent variables will not only 
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Ths effect is very easily seen in the case of 
only one independent variable. The relation 
between the measured values x1 of the in- 
dependent variable and xo of the dependent 
variable is then given by 

x,, = b,x, + 5 

where b, is the regression coefficient and [ is 
the residual in the regression equation between 
the measured quantities. If the measurements 
are subject to random errors we may write 

xi = xi + Ei (4 
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where xi is the true value of xi and ~i is the 
random error of measurement, the corre- 
sponding regression equation between the true 
values being 

X;  = b;x; + 5’. 

For the sake of simplicity, but without loss of 
generality we may assume that all variables 
have zero mean. 

We shall assume that the errors are always 
random with respect to the true variables, i.e. 

(3 )  

- 
EiX j  = 0 (4) 

( 5 )  

for all i andj, which implies that 
- __ - , .  
xixj = xix, + EiEj. 

A bar denotes the mean value of an infinitely 
large sample. 

The expectation values of the regression 
coefficients b ,  and b; are then 

and 
_ _ -  
%;xi + &O&l b,= - - . + &; (7) 

For the corresponding correlation coefficients 
they are 

and - -  

From these equations it follows that the expec- 
tation values of the regression and correlation 
coefficients are alwa s affected by random 
errors in the inde en ent variable x l .  Regard- 

lation coefficient R is, of course, always in- 
fluenced, whereas the regression coefficient b; is 
affected only if this error is correlated with the 
error in the independent variable. We see 
that b, may be smaller or larger than b;, 
depending on the correlation which exists 
between E~ and el.  Even for the correlation 
coefficient it may happen that R > R’, which 

ing errors in the gd ependent variable, the corre- 

is rather surprising as one intuitively expects 
that the presence of errors would invariably 
reduce the magnitude of this statistical pa- 
rameter. The case of R > R‘ can, however, 
occur only in the rather unusual situation 
when the correlation between the errors is 
stronger than between the true variables 
themselves. 

If the errors are not correlated with each 
other, i.e. 

it is easily seen that the expectation value of R 
is always less than that of R’, and that the 
numerical expectation value of b ,  is always less 
than that of 3;. This effect of random errors 
of measurement on the correlation coefficient 
was first noted by SPEARMAN (1904). 

2.  Several variables with uncorrelated errors 
We shall now consider regression equations 

with several independent variables. As these 
variables may well be correlated with each 
other, they are often only formally independ- 
ent. If the errors of the different variables are 
also correlated with each other, the situation 
beccmes so complicated that very few con- 
clusions can be drawn regarding the effect of 
the errors on the regression and correlation 
coefficients. However, in many (and perhaps 
in the majority) of the cases of practical in- 
terest the errors are not correlated with each 
other. We shall, therefore, begin with a discus- 
sion of this restricted case. On the other hand, 
the regression between cosmic-ray intensity 
and atmospheric conditions, which is to be 
discussed in the second part of this paper, 
presents a case in which the errors are inter- 
correlated. 

Let x,, be the de endent variable, and xi ,  

Let us denote by A the determinant with 
elements 

a . . = x . x .  I J *  i = o ,  I ,  . ... n, and 1J 

i = I ,  2 , .  . . n, be t E e “independent” ones. 

- 

j = o ,  I, .... n, (11) 

and by Aij the corresponding cofactors. The 
empirical mdtiple regression coefficients are 
then given by 

bi = - Aoi/Aoo~ (12) 
Tellus XI (1959). 4 
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the corresponding partial correlation coeffi- 
cients by 

Ti2 = &i/ (AooAii), ( 1 3 )  

R2 = I - A/(aooAoo).  ( 1 4 )  

and the multiple correlation coefficient by 

The corresponding true values bf,  r; and R’ are 
obtained by substituting for ac the true 
covariances 

based on the true values of the variables. 
For the variances of errors we shall - find it 

convenient to introduce the notation q2 = ~ g .  
In order to see how the errors influence the 
expectation values of regression and correla- 
tion coefficients, we first note that in the 
restricted case under consideration we have, 
according to (5) and (IO), that 

aakk I a s k k  = 1, (16) 

whereas 

aaij/a&kk = o if either i # k and/or j # k.  (17)  

Eq. (16) holds, however, also in the most 
general case, but not (17). By means of (16) 
and (17) we now find that 

aA / a&kk = A k k  ( 1 8 )  

aAij/ a&kk  = ( A i j ) k k ,  (19)  

and 

where ( A i j ) k k  denotes the cofactor of the 
element akk as it appears in the determinant 
A@. If akk is not an element of Aij, ( A @ ) k k  is 
identically zero, and it should be noted that 
this occurs whenever i or j equals k .  

If we differentiate (12) we find, by means 
of ( 1 8 )  and ( I S ) ,  that 

If k=O, we have (A&&= ( A o i ) k k = O ,  and 
thus abi /2q,,, = 0. Consequently, the expecta- 
tion values o f  the regression coeficients are not 
influenced by errors in the dependent variable. 
Tellur XI (1959). 4 

If k = i  we stdl have (&i)kk=o, but as i 
cannot here be zero, ( A & &  # 0, and we get 

As (A& and A, are both positive definite 
we conclude that random errors in an inde- 
pendent variable always tend to reduce the 
numerical value of the correspondin regression 

be said about the sign of abi/J&& when o # k  #i ,  
the regression coefficients correspondmg to 
other independent variables may be influenced 
in either direction depending not only on the 
intercorrelation between the “independent” 
variables, but also on their correlations with 
the dependent variable. Consequently, if 
several variables contain random errors, no gen- 
eral rule can be formulated regarding the com- 
bined efect of these errors on a given regression 
coeficient. 

coeficient. However, as nothing B efinite can 

Differentiating (13),  we obtain 

(22) 

If k = o the first and the third quotients within 
the brackets vanish, but as i cannot be zero the 
second term remains, and we find that ( I /r i )  . 
. (ari/a&,) is always negative. Consequently, 
errors in  the dependent variable reduce the nirmer- 
ical expectation values of all partial correlation 
cogjcients. If k = i  only the first term remains, 
and we find that also ( I / r i )  (dri/J&ii) is nega- 
tive, whereas if o + k + i  the sign depends on 
the correlations between all variables. We thus 
see that random errors in an independent vari- 
able also tend to reduce the numerical value of 
the corresponding partial coefjcient, whereas the 
expectation values qf the other partial correla- 
tion coefficients may be changed in either di- 
rection. 

Finally, differentiation of (14) gives for k # o 
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where Rk denotes the multiple correlation 
coefficient which would have been obtained 
without the variable xk. As the correlation 
cannot improve if one of the independent vari- 
ables is discarded, we conclude that 2R/2ckk<o 
for all k ZO. (It might have been zero if x, had 
not been correlated with xk, but then there 
would have been no need for xk as an inde- 
pendent variable.) Consequently, random er- 
rors in any  independent variable reduce the 
expectation value qf the multiple correlation 
coef f ient .  It is obvious that the same ap lies 
to errors in the dependent variable when t 1 ese 
are not correlated with the errors in the inde- 
pendent variables. 

If the independent variables are not inter- 
correlated, the situation is much simpler. We  
then have a i j = o  whenever i j ( i  - j )  ZO, and 
find that (12), (13) and (14) reduce to 

and 
RZ = azi / (oooaii). 

i # o  

We thus see that 6 ,  can only be influenced by 
~ i i ,  whereas ri and R are still influenced by 
random errors in any variable. 

3. Several variables w i t h  correlated errors 
In the more general case when the errors in 

different variables are correlated and (10) is 
no longer satisfied, (18) and (19) do not hold 
and the rules formulated on the basis of the 
equations (20), (22) and (23) no longer apply. 
The following can, however, be said: 
A. If, but only if, the errors in the dependent 

variable are correlated with the errors in 
one or more of the independent variables, 
the expectation values of all regression 
coefficients will be influenced also by the 
errors in the dependent variable, but 
not necessarily in such a way as to reduce 
their numerical values. 

B. The numerical expectation value of a 
partial regression or correlation coefficient 
is no longer necessarily reduced by errors 
in the corresponding independent vari- 
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able, nor will errors in the dependent 
variable always reduce the numerical 
expectation values of all partial correla- 
tion coefficients. 

C. Even the multiple correlation coefficient 
may have its expectation value increased. 

It is not difficult to convince oneself about 
the truth of the statements (A) and (B), but 
(C) is at first sight rather surprising. It can, 
however, be shown that the residual variance 
has still an absolute minimum when random 
errors of measurement are absent. 

The residual 6 of the empirical regression 
equation 

X, = 2 bixi + [ (27) 
i # o  

can be written in the form 

[ = E' + (E,  - X bisi) + X (b; - bi) xf, ( 2 8 )  

where 6' is the residual of the regression equa- 
tion 

0 - L  - -7 yx' i I + 6' 

I #  0 i # o  

(29) 
i f 0  

between the true variables. As ==O for 
all i zo and, according to (4), Gi =o for all i, 
we find that 

i # o  I #  0 

(30) 

which clearly demonstrates that in all cases 
the residual variance has an absolute minimum 
at zero errors. 

If we express the residual variances F and 
6'2 by means of the respective multiple correla- 
tion coefficients and total variances of the 
dependent variables, and use the relation 
xi2 = x i  - E;, we get from (30) that 

- 

_ - -  

__-- 
(R'2 - R2) 2 = - (I - R'2) ET+ [E, - bi~i] '  + 

i + P a  

If EX = o for all i #o, (3 I) reduces to 

( 3 4  
i# 0 

Tellus XI (19S9), 4 
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From the equations (31) and (32) we can now 
draw the following conclusions: 

A‘. 

B‘. 

If the errors in the dependent variable are 
either absent or uncorrelated with the 
errors in the independent variables, the 
multiple correlation coefficient has an 
absolute maximum at zero errors. This 
does not, however, imply that all partial 
derivatives of R with respect to the error 
variances will be negative or zero every- 
where in error space. 

If the errors in the dependent variable are 
correlated with the errors in the independ- 
ent variables, R may in special cases be 
greater than R’, provided that the correla- 
tion between the errors is stronger than 
that between the true variables. It would, 
for example, happen if the partial regres- 
sion coefficients between the errors are 
approximately equal to those between the 
corresponding true variables, as the third 
term of (31) is then close to zero and the 
second term approximately equal to 
(I - R:)Z where Re denotes the mul- 
tiple correlation coefficient between E~ as 
dependent variable and the other errors 
as independent variables. It would also 
happen if all error variances are large 
compared to the variances of the corre- 
sponding true variables, as the empirical 
regression coefficients will also then be 
approximately equal to those between 
the errors, again making the first and 
second terms of (31) dominant and their 
sum approximately equal to (R: - ~ ’ 2 )  3. 

Even though peculiar cases such as those 
discussed in (B’) may be very rare in practical 
applications, they serve to demonstrate how 
careful one should be when judging the 
quality of empirical relationships established 
between variables with unknown errors. 

The important consequence of these con- 
siderations is that when some relationship is 
ex ected to exist between two or more physi- 
caf quantities for theoretical reasons, empiri- 
cally determined regression coefficients are 
never strictly comparable to the theoretically 
estimated ones. The expected discrepancies 
may, of course, be small or even negligible if 
the measurements are very accurate, but it 
Tellus XI (1959). 4 
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should never be forgotten that significant and 
otherwise unexplainable discre ancies may 
arise in this way. In the secon c f  part of this 
paper we shall present what we believe to be 
such a case. 

It should es ecially be noted that if some of 

correlated with each other, the empirical 
regression coefficients may be widely different 
from the true ones if one of those variables 
contains even relatively small errors. 

However, if we can in some way or other 
obtain estimates of the variances and covari- 
ances of errors which we know to be present 
in empirical data, we can use eq. (5) to compute 
true variances and covariances of the variables. 
Having thus removed the influence of the 
errors, the true regression and correlation 
coefficients can be found. This we shall now 
try to do in the case of the atmospheric effects 
on the hard component of the cosmic radiation. 

the “indepen c r  ent” variables are very strongly 

II. Application to the cosmic-ray 
atmospheric effects 

I. Introduction 
As an application of the preceding general 

considerations we shall discuss the problem of 
determining the regression coefficients rep- 
resenting the atmos heric effects on the 

sea-level. This component is usually defined 
as that part of the radiation which is able to 
penetrate 10 cm of lead. It consists of nearly 
only p-mesons, and their number depends on 
the atmospheric conditions. The intensity of 
the hard component is usually correlated 
with the barometric pressure B at sea-level, 
the height Hl of the 100 mb level and the 
temperature Tl at or near that level. The 
barometer effect is mainly due to the absor - 
correlation with the height of the IOO mb 
level is due to the dependence of the disinte- 
gration probability of the p-mesons on the 
distance between their production levels 
and sea-level, whereas the origin of the 
(positive) temperature effect is more com- 
plicated. 

The interpretations of these effects have been 
discussed by TREFALL (1955 a, 1955 b and 
1956), and theoretical estimates of the regres- 

hard component of t t e cosmic radiation at 

tion of the radiation in the atmosphere. T hp e 
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~ 

Temperature 0.57 OC 
Pressure.. . . . 6.3 mb 

0.61 "C 
4.5 mb 

sion coefficients have been calculated and 
compared with empirical results. It was then 
found (TREFALL 1956) that the empirically 
determined values of the height coefficient 
(the partial re ression coefficient with respect 

ture coefficient) had usually too small nu- 
merical values to be compatible with the 
theoretical estimate. This is clearly shown in 
Figure I ,  where curve B gives the theoretically 
expected dependence of the height coefficient 
on the amount of absorbing material in the 
meson recorder. At that time no satisfactory 
explanation could be found for the discrepancy, 
but it now appears that it is probably due to 
errors in the aerological data which have been 
used as independent variables in the regression 
e uation for the determination of the atmos- 

to HI, often a K so called the negative tempera- 

p st eric effects. 

C n P b  - 

2. Estimation .f errors in aerological data 
The observational errors in radiosonde data 

have been studied in later years by several 
authors. Some of their results are given in 
Tables I a, b and c. RAAB and RODSKJER (1950) 
used twin soundings, and obtained the error 
standard deviations given in Table I a. From 
night soundings ROSS (1952) obtained similar 
results (Table I b). From the Payerne com- 
parison of radiosondes NYBERG (1952) com- 
puted the standard deviations given in Table I c 

Temperature 

Table I a. Estimates of error standard deviations 
for the Finnish radiosonde 
(RAAB and RODSKJER 1950) 

All six tested 0.47 "C 0.81 O C  

Isobaric levels 

350 mb-150 mbl 2 150 mb 

Table xb. Error standard deviations for night 
twin soundings with the Finnish radiosonde 

(ROSS 1952) 

Isobaric levels 

z75mb 1 I62mb I g6mb 
Meteorological 

element 

Temperature.. . . . . . 
Pressure.. . . . . . . . . . 

Table I c. Error standard deviations for the 
Payerne data of I950 

(NYBERG 1952) 
~ ~~ ~ 

Isobaric levels 
500 m b  300 mb- 

Meteorological Radiosonde 1 type 1 100 mb I 200 mb 
element 

Finnish 1 5.4 mb I 5.9 mb 1 
All six tested 5.2  mb 5.8 mb Pressure. . . . I  

for the errors in night releases. These values 
are probably lower than the errors of aerolog- 
ical data obtained under ordinary working 
conditions, when there is less careful inspection 
of the instruments and less reliable conversion 
of transmitted data. In addition all aerological 
records incorporate influences from small- 
scale systems such as cumulus convection, 
gravity waves and others. Such disturbances 
are "noise" on the synoptic scale, and effec- 
tively increase the errors beyond those obtained 
from twin soundings. 

A better method for determining the total 
error, variance would be to erform simul- 
taneous or approximately sim ,P taneous sound- 
ings at stations separated by a distance of the 
order of 10 km. Such a pair of stations now 
exist on Spitzbergen, where the Norwegian 
station at Isfjord Radio and the Russian station 

Tellus XI (1959). 4 
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300 mb 

- - Period 
&; &A n 
(C'), m2 

at Barentsburg are situated only 18 km apart. 
If Y i  and k;. denote the deviations of two 
meteorological elements from their respective 
mean values, we have 

y i , l  - Y i , B  &i,I - &i,B (3 3) 

k;.J - k;..B % ej.1 - &j,B, (34) 

where subscripts I and B refer to Isfjord Radio 
or Barentsburg data, respectively. As there can 
be no significant correlation between the errors 
in corresponding data from the two stations, 
we find that the error covariances of the sta- 
tions are related by the equation 

and 

- - ~  
&i,I&jJ -I- &i,B&j,B (q.1 - y i , B )  (k;.J - k;.,B)- 

(35) 

Putting i=j  we obtain an equally valid rela- 
tion for error variances. 

In order to separate the error variances of 
the two stations some assumption must be 
made regarding their relative reliability. As 
there is nothing to suggest that one station is 
more reliable than the other, our best estimate 
of the error covariance of a pair of meteoro- 
logical elements observed at any station is, 

zoo mb IOO mb 

- - 

&+ &A 
(Co)* mP (Co)S m2 

according to the method of maximum likeli- 
hood, 

Period 

17 Sept.-zg Oct. 1957 ....................... 
I Nov. 57-6 Tan. 1958 ..................... 

(36) 

Errors of: 

Hl and TI I Hl and H ,  I Hl and Hs 

0.589 0.766 0.728 
0.495 0. so8 0 . 2 5 2  I I 

where the summation has been performed 
over the n available data. Error variances are 
again obtained by putting i=j. Having thus 
estimated both variances and covariances of 
errors, correlation coefficients between errors 
may also be computed. The results are pre- 
sented in Tables 2 and 3. In order to check the 
stability of these statistical parameters the data 
were divided in two groups of approximately 
equal sizes. The variances are apparently very 
stable, as was confirmed by means of the 
F-test. The correlation coefficients are not so 
stable, even though none of the differences 
are statistically signlficant at the 5 % level. 

The existence of correlations between errors 
is, of course, due to the fact that the heights of 
the isobaric levels are not measured directly, 
but are computed from records of the atmos- 
pheric temperature distribution as a function 
of pressure. Any error in the tem erature 
measured at a given pressure level wily, there- 
fore, contribute to the error in the heights of 

Table 2. Estimated error variances for heights and temperatures 

Table 3. Correlation coefficients between errors 

I Both combined.. ............................ .( 0.560 I 0.628 I 0.465 

Tellus XI (1959). 4 
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all higher levels. Only errors in the thicknesses 
of not overlapping atmospheric layers are 
expected to be uncorrelated. A further check 
on the correlations obtained could therefore 
be performed by computing correlation 
coefficients between the errors in the height 
H, of the 200 mb level and the thickness 
Hl- H ,  of the 100-ZOO mb layer, and 
between the errors in the height H3 of the 
300 mb level and the thickness Hl - H3. The 
values obtained for the combined periods 
were - 0.050 and +0.188, respectively, none of 
which are significantly different from zero. 

ELIASSEN (1954), who analysed data from 
British stations, estimated by means of a 
different method the error variance of the 
height of the 300 mb level to be 2,092 m2. 
This agrees very well with the results that are 
given in Table 2, and indicates that the error 
estimates in Table 2 can be used in the follow- 
ing discussion. 

3 .  Evaluation of corrected cosmic-ray regression 

After having thus obtained estimates of the 
error variances and covariances of the necessary 
meteorological elements, corrections were 
applied according to (5) to the aerological 
data used in the analysis of some cosmic-ray 
records from Manchester. The errors in the 
sea-level pressure records could be neglected 
because their variance was negligible compared 
to the total pressure variance. The aerological 
data came from the Liverpool station some 
50 km away, whereas the pressure data were 
recorded in Manchester. As the cosmic-ray 
data represented the integrated intensity 
throughout a day, corresponding mean values 
were used for the meteorological elements. 
The daily mean of the barometric ressure 

logical data on 4 radiosonde ascents per day. 
%Only days on which all soundings reached the 

coefficients 

was based on 24 hourly readings, and t R e aero- 

100 mb level were used. When the corrections 
for errors were applied, allowance was made, 
of course, for the fact that we were using 
daily mean values of the meteorological 
elements. 

Two periods were selected for analysis, 
one from July 13th to September 11th 1950, 
and another from September 1st to November 
7th 1951, containing 34 and 40 useful days 
respectively. The total variances of the meteor- 
ological elements were quite different for the 
two periods, being very low in 1950 and 
rather high in 1951. This is clearly shown in 
TabIe 4, where we have given ratios between 
total variances of aerological data for each of 
the two periods and our estimated error 
variances. We therefore expect the regression 
coefficients from the 1950 period to be much 
more affected by the random errors of measure- 
ment than those from 1951. 

In Table 5 we have given uncorrected and 
corrected regression and correlation coefficients 
corresponding to three different sets of in- 
dependent variables. The reasons for in- 
troducing the second and third sets of variables 
will be given later. It should here only be noted 
that the theoretical estimates of the height 
coefficient b,’ are nearly equal for all three 
sets of variables, its numerical value increasing 
only slightly as we go from the first to the 
third set. The temperature coefficient b,’ will, 
however, depend critically on the choice of 
variables and is, in fact, expected to change 
from positive to negative values as we go 
from the first to the thxd set. The correspond- 
ing change in bl’ is negligible. 

The differences between the uncorrected and 
corrected height coefficients for the 1950 
period are remarkable. Even though the values 
of b ,  obtained with the three different sets 
of variables are on the average only about 
60 % of the corresponding theoretical values, 
the corrected coefficients b,’ agree very well 

Table 4. Ratios between total variances and estimated error variances for the Liverpool 
aerological data 

1950.. . . . . . . . . . . I  5.6 1 2.1 I 11.9 I 21.2 1 6.4 I 6.6 I 
I951 . . . . . .  . . . ... 11.4 18.7 45.0 58.8 10.3 11.0 

Tellus XI (1959). 4 
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Table 5. Regression and correlation coefficients for cosmic-ray atmospheric effects 

I I I  Uncorrected I Corrected 1 
Period 1 1 bl 1 bZ 1 ‘3 I R 1 bl’ 1 ’/ I 4’ 1 R’ 

Variables 

%/km %/km %I”C %/km %/km %I”C 1 I950 1- 1.461- 3.481 + 0.079 I 0.849 1- 1.371-6.38l + 0.067 1 0.860 
1951 -0.84-5.95 + 0.116 0.966 -0.80-6.28 + 0.124 0.971 B, H i ,  TI 

H, Hz, (HI-Hz) 

B’ H3’ 1 1950 l-1.151-4.72/ -0.019* 1 0.8701- 1.08/-6.99/ -0.099* 1 0.879 
,951 - 0.85 - 6.52 -0.091* 0.958 - 0.85 - 6.78 - 0.102~ 0.963 

In order to facilitate comparisons between the regression coefficients bs or b,’ obtained with dif- 
ferent sets of independent variables, all coefficients marked by asterisks have been given in terms of 
equivalent variations of the mean temperature of the atmospheric layer under consideration. 

with the theoretical estimate presented in 
Figure I. Further, the rather high values of 
the barometer coefficient b, obtained with the 
first and second sets of variables are somewhat 
reduced when the corrections are applied. 
The temperature coefficient b, obtained with 
the first set seems, however, to be adversely 
affected by the correction. 

The results from 1951 are not quite so satis- 
factory. This period is characterized by ab- 
normally low values of the barometer coeffi- 
cient b,, and the even lower values of b; are not 
encouraging. The height coefficients b, behave 
better, as they already before the correction 
agree fairly well with the theoretical esti- 
mates and the slight changes after the correction 
bring them into very good agreement with the 
corresponding coefficients for the 1950 period. 
The reason why the height coefficients of 
the 1951 period are so much less affected by 
our correction is, no doubt, that the total 
variances of the heights of all isobaric levels 
are greater in 1951 than in 1950. The tem- 
perature coefficients b, have quite reasonable 
values both before and after the correction. 

Our correction has in all cases led to an 
increase of the multiple correlation coefficient. 
However, it was shown in the first part of this 
paper that only under very special circumstances 
would such a correction not lead to an in- 
crease in the multiple correlation coefficient. 
This would hold even if error variances and 
covariances were arbitrarily chosen within 
the range permitted by the general laws of 
statistics. The observed differences between 
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R’ and R cannot, therefore, be made the 
basis for any conclusion regarding the correct- 
ness of the estimated error variances. The real 
tests are that the variability of the regression 
coefficients obtained for different periods 
should be reduced and the agreement be- 
tween empirical values and theoretical esti- 
mates should be improved. 

The view that the low empirical height 
coefficients obtained by most workers may 
have been caused by the large errors in the 
height HI of the 100 mb level, is supported 
by the fact that higher values are usually 
found when monthly means of cosmic-ray 
intensity are correlated with corresponding 
meteorological data than when daily means 
are used (BACHELET and CONFORTO, 1956). As 
we expect the ratio of error variance to total 
variance to be smaller for monthly means 
than for daily means, such a trend in the 
empirically determined coefficients is to be ex- 
pected. It must, however, be remembered that 
the characteristics of the day-to-day variations 
of the atmos heric temperature distribution 

As the atmospheric temperature distribution 
is far from uniquely determined by the chosen 
variables, differences between “seasonal” and 
“day-to-day” regression coefficients may arise 
also in this way. 

differ from tK ose of the seasonal variations. 

III. Conclusion 

The results obtained demonstrate how 
drastically empirical regression coefficients may 
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be influenced by random errors of measure- 
ment. Therefore, if one out of a number of 
measured quantities can select different sets 
of variables, which would have contained 
approximately equal amounts of information 
had no errors been present, one should use 
that set for which the ratios between the error 
variances and the true variances of the vari- 
ables are the lowest. 

In Table 4 we gave ratios between the total 
variance and the estimated error variance of 
the quantities which have been employed as 
independent variables in the present anal- 
ysis. It is not surprising to find that this 
ratio is much smaller for Hl than for H, 
or H3. The decrease of the ratio with in- 
creasing height is mainly due to the negative 
correlation between stratos heric and tro - 
ospheric tem eratures, w K ‘ch makes t R e 
true variance o P Hl less than the corresponding 
variances for levels closer to the tropopause. 
As the error variance steadily increases with 
increasing height as shown in Table 2, the 
relative error variance (the ratio between error 
variance and total variance) increases very 
rapidly as we go from the troposphere to the 
stratosphere. 

From the statistical point of view the height 
Hl of the 100 mb level is, therefore, a poor 
variable. Actually, the extensive use of H ,  in 
the study of the atmospheric effects on the 
cosmic radiation seems to be somewhat fortui- 
tous. It is true that Duperier, who was the 
first one to correlate cosmic-ray intensity with 
heights of isobaric levels, obtained a better 
correlation with Hl than with heights of 
lower levels (DUPERIER 1945). However, later 
results by Duperier and others (DUPERIER 1949, 
WADA 1951. BACHELET and CONFORTO 1956) 
do not generally show this preference for the 
100 mb level, and actually indicate that on the 
average the correlation is better with the zoo 
mb level than with the IOO mb level. This is 
really not surprising, as the mean level of 
meson production appears to lie near 150 mb. 

Even though it might be desirable to 
avoid the IOO mb level altogether and use 
only data from lower levels, theoretical con- 
siderations show that some information about 
higher levels is also needed for a really satis- 
factory representation of the cosmic-ray 
atmospheric effects. This is the reason why Hl 
has been retained in our second and third sets 

of variables, and only the temperature Tl at 
the IOO mb level has been replaced by the 
height of some lower isobaric level. From the 
statistical point of view and according to 
Table 4 these sets should certainly be better 
than the first one. The results given in Table 5 
show that the corrected regression coefficients 
are most stable when the third set of variables 
is employed, but no final conclusion should 
be based on the results obtained from these 
two small samples only. 

The reasons why we have used the thickness 
of a certain layer (the difference between two 
heights) as the third variable of the second 
and third sets rather than the single height HI 
are threefold: Firstly, these sets of variables 
are essentially the same type as the first one 
because the third variable is a measure of the 
mean temperature of that layer, and this 
makes the comparison of regression coefficients 
very easy. Secondly, we now avoid the inter- 
correlation between errors which makes the 
detailed study of their effects so difficult. Fi- 
nally, with this type of regression equation 
each term has a more &rect physical signif- 
icance than in the other case. 

As a final remark we mention that the rela- 
tive error variance of the atmospheric tern era- 

where it is less than half the value at 100 mb 
(NORDO, 1958). Remembering that the mean 
level of meson production lies near 150 mb, 
one would expect the barometric pressure B, 
the height H, of the 200 mb level and the 
temperature T ,  at this level to be a very good 
set of variables for the representation of the 
cosmic-ray atmospheric effects. The reason 
why we have not tried this set is that the main 
purpose of the present pa er was to point out 

of measurements generally may have on 
empirical regression coefficients. The cosmic- 
ray case should main1 serve as an example 
indicating the applicabizt y of the mathematical 
considerations given above. 

ture has a minimum near the 200 mb P evel, 

the important effects w K ich random errors 
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