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Abstract 
Some aspects of existing theories of the wind-driven ocean circulation are examined with 

particular emphasis on the question of the need for the inclusion of lateral eddy viscosity to 
provide a mechanism for balancing the applied wind torque. A new model is proposed according 
to which the ocean is divided into a southern and a northern portion, attention being restricted 
to the former which is itself subdivided into an interior region and a boundary region adjacent 
to the western shore. The equations of motion in terms of spherical coordinates are formally 
integrated over depth for both a homogeneous and a two-layer ocean. Approximate equations 
analogous to those used in existing theories are proposed for the interior region. Conditions in 
the boundary region are considered in an effort to determine the relative importance of the 
various terms in the equations. Based on these considerations approximate equations are derived 
for the boundary region. These imply the predominance of the pressure terms, the nonlinear 
inertia terms and the terms arising from the variation of the Coriolis parameter with latitude. 

The approximate equations are transformed to surface coordinates and are applied to the 
homogeneous ocean and a two-layer ocean subjected to a simple wind distribution, yielding 
reasonable results. It is shown that the variation of the Coriolis parameter plays a fundamental 
role in the formation of the stream on the western shore. Simple physical interpretations of the 
results are presented including an explanation of the facts that no similar stream can be formed 
on the eastern shore and that the variation of depth in a two-layer ocean, when the Coriolis 
parameter is assumed constant, cannot give rise to an intense stream. Appropriate curves illus- 
trating the dependence of the solutions on  certain dimensionless parameters are given. When 
applied to the North Atlantic the theory gives reasonable results for the Gulf Stream north to, 
say, Cape Hatteras. 

I. Introduction 
Existing theories of the wind-driven circu- 

lation in closed ocean basins (SVERDRUP, 1947; 
MUNK, 1950) are based on the assumption that 
the principal features of the flow pattern are 
the result of the balance between wind, 
Coriolis, lateral friction and pressure forces and 
that all other contributions to the dynamic 
equations are, for pur oses of an approximate 

to a linear problem, an approximate solution 
of which is obtained most conveniently by 
applying boundary layer analysis to the vor- 
ticity equation (MUNK and CARRIER, 1950). 

investigation, negligib P e. This assumption leads 
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Although the circulation which is predicted is, 
at least qualitatively, very reasonable, the 
theory has been criticized especially on the 
grounds that the value of the coefficient of 
lateral eddy viscosity must be chosen empiri- 
cally, and further, that the value which gives 
the proper width to the intense current on the 
western shore is considerably larger than that 
indicated by other, independent considerations. 

In the following, other aspects of the above- 
mentioned theories are considered and atten- 
tion is devoted to the question of the im- 
portance of the lateral eddy viscosity. It has 
previously been argued that this must be in- 
cluded in every steady-state theory because it 
provides the forces of friction on the sides of 
the basin which give rise to the torque that 
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must be present to balance the total torque 
exerted on the ocean by the wind. This 
problem is discussed in Section z where an 
equation for the balance of total moment of 
momentum about the center of mass of the 
ocean is derived and it is seen that this con- 
sideration alone is not sufficient to determine 
whether friction is required in the moment 
balance. 

In Section 3 the equation of vorticity in 
terms of spherical coordinates is formally 
integrated over the depth of a layer of water 
which is considered to have uniform density 
(either the total ocean depth, if one deals with 
a homogeneous model, or the depth of the 
upper layer in a two-layer model). Approxi- 
mate equations which apply to the interior 
region of the ocean and stipulate the pre- 
dominance of wind, Coriolis, and pressure 
forces are derived in Section 4. In Section 5 
the conditions in the boundary region in 
which an intense current is expected are 
discussed and we return to the problem of the 
need for including lateral eddy viscosity. 
Based on this discussion a model is proposed 
according to which the ocean is lvided into a 
southern and a northern region. Attention is 
confined to the former which is again divided 
into an interior region, to which the equations 
derived in Section 4 apply, and a boundary 
region, adjacent to the western shore, for which 
approximate equations are derived by means 
of boundary layer analysis. These imply the 

redominance of the pressure terms, the non- 
[near inertia terms, and the terms arising from 
the variation of the Coriolis parameter with 
latitude, friction being neglected.1 

The approximate equations are transformed 
to surface coordinates in Section 6 and are 
applied to a homogeneous ocean in Section 7. 
The theory predicts an intense current flowing 
northward along the western shore. The 
reason for the existence of this current from a 
physical point of view is discussed and it is 
--__ 

The probability that viscosity is unimportant in the 
Gulf Stream was suggested by H. Stommel in a discussion 
following formal papers delivered at the June 1954 
Convocation at Woods Hole (the complete proceedings 
of which are to be published as a supplement to the 
Journal of Marine Research, Vol. 14, No. 4, Dec. 31, 
rg55), and in a privately printed pamphlet entitled “Why 
do our ideas about the ocean circulation have such a 
peculiarly dream-like quality?”, April 1954. 

shown why no similar current can exist on the 
eastern shore. 

In Section 8 the theory is applied to the 
upper layer of a two-layer ocean. The role of 
a certain parameter involving the depth of the 
layer, the magnitude of the westward volume 
transport into the boundary region, the south- 
north dimension of the basin, the reduced 
gravity constant, and the variation of the 
Coriolis parameter with latitude, is studied. A 
proof is given that the variation of the Coriolis 
parameter is essential to the formation of an 
intense current even in. a two-layer system. 
Numerical solutions are presented and it is 
concluded that, for reasonable values of the 
physical quantities involved, the barotropic and 
baroclinic models are not basically different as 
far as the formation of the stream is concerned. 
When applied to the North Atlantic the theory 
predicts the correct order of magnitude for the 
width of the Gulf Stream. 

2. Moment of Momentum Balance 
It has frequently been asserted (e.g. MONT- 

GOMERY, 1940) that, for steady-state conditions, 
friction must be present on the bounding 
surfaces of the basin to provide the torque 
required to balance the total torque applied by 
the wind. Since it has been held reasonable to 
assume that the friction on the bottom is 
negligible, this argument has led to the 
conclusion that lateral eddy viscosity must be 
included in the equations of motion in order 
to give rise to a shear stress on the sides of the 
basin. In view of the obvious importance of 
this question, it will be examined in the 
following. The physical quantity of interest is 
the total moment of momentum about the 
center of mass, the momentum referring to 
the velocity recorder by an observer who is 
fixed to the earth. For steady-state conditions 
this moment must be constant. 

The equation of motion is 

Dq @ - + @252 x q + @A2 x (0 x r) = Dt 

where 4 is the velocity of a particle as seen by 
an observer fixed to the earth, D/Dt is the 
material derivative, e is the density (not 
necessarily uniform), 52 is the earth‘s angular 

Tellus VIII (1956). 3 
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rotation vector, 1: is the position vector of the 
particle with respect to the center of the earth 
and with respect to a coordinate system which 
rotates with the earth, p is the pressure, x' is 
the gravitational potential, and F is the net 
t-orce on a unit volume due to eddy viscosity 
and can be written v - a where a denotes the 
stress dyad minus the contribution of the 
pressure p .  

The equation of conservation of mass is 

Set 

ae -+ div eq= 0. 
at 

vx'-.R x (A2 x r)  

where 6 is the perpendicular distance of a 
point from the axis of rotation of the earth, 
Q is the absolute value of .R and x is the apparent 
gravitational potential. Carrying out the vector 
multiplication of the resulting equation with 
Y,, the position vector of a point with respect 
to  the center of mass, and integrating over the 
total volume of the ocean, one has 

/ e r r  x Dt av+  err x ( 2 ~ 2  4) av= 
V Dq I' s 

Ths equation can be transformed by making 
use of equation (2 .2) ,  the relations 

Dr 
Dt " 
-= 

q~ being any arbitrary continuous function with 
continuous first derivatives, and the transfor- 
mation formulae relating volume and surface 
integrals, t o  give 

D 
- f r ,+eqdV+ f r , ~ e ( 2 B x q ) d v  = 
Dt v V 

f err x VxdV- f r, x npds + f r, x TdS (2 .6)  
V S S 
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where S is the surface enclosing the volume 
V, n is the unit outer normal vector on S, and 
T a z - a  and denotes that portion of the 
surface traction which is due to the frictional 
mechanism. It should be noted that equation 
(2.6) holds irrespective of the particular nature 
of the eddy viscosity (or molecular viscosity), 
the only additional requirement for its deriva- 
tion being the symmetry of the stress dyad. 

The left-hand side of equation (2.6) repre- 
sents the rate of change of moment of momen- 
tum and consists of the rate of change as seen 
by an observer fixed to the earth and the 
contribution by the Coriolis forces. The right- 
hand side represents the moment of all external 
forces, the gravitational attraction, the pressure 
on the surfaces and the forces arising from 
viscosity. The last integral may be split into 
two ortions, one involving integration over 

moment due to the wind, the other involving 
integration over the ocean bottom and sides. 
The contribution of the pressures to the 
moment is principally due to the fact that the 
free surface is disturbed by the motion and 
that the moments due to the pressures on the 
sides will then not, in general, add to zero. If 
one deals with a circular basin having a vertical 
shore and uniform depth, then the moment 
due to the pressures acting on the shore will be 
very small because the center of mass will be 
very close to the geometrical center. 

For a steady-state solution the first term on 
the left of equation (2.6) must vanish. The 
contribution of the body force to the moment 
is negligible. Thus the moment balance in- 
volves the contributions of the Coriolis force, 
the pressure, the wind, and the friction on the 
shores and bottom, and it is seen that no 
immediate conclusion can be drawn from this 
consideration alone concerning the need for 
including friction on the sides, even if friction 
on the bottom is neglected from the start. The 
moment created by the wind may possibly be 
balanced by the Coriolis and pressure moments, 
or by the former alone if the basin is circular. 

The preceding considerations in no way 
prove that lateral friction is not required; they 
only demonstrate that the question cannot be 
decided on the basis of moment balance alone. 
The problem will be discussed from a different 
point of view in Section 5 .  

the P ree surface and thus representing the 
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3. Equations of Motion in Spherical 
Coordinates 

Since an analytical investigation of the three- 
dimensional roblem is prohibitively compli- 

fining our attention to the integrals over depth 
of the velocity components and of the vorticity. 

Using the spherical coordinates (r, 6, fp), the 
origin being at the center of the earth and 6 
being the colatitude, and corresponding ve- 
locity components ql, q,, q3, the momentum 
equations are 

* + non linear terms - 2 q 3 ~  sin 8 = 

cated, we fo B ow the usual procedure of con- 

at 

= - _ -  I a‘ -g+Fl  
e ar 

’43 ’43 4 2  ’43 43 aq $43 
-+q1-+-  -+->+-+ 
at ar r 26 rsm6 afp r 

+ N3 cot 6 + 2 q , ~  cos 6 + 2 q 1 ~  sin 6 = 
r 

( 3 . 3 )  

Here (Fl, F,, F3) denote the contributions of 
the eddy viscosity, g denotes the gravitational 
acceleration, and the centrifugal force terms 
which give rise to the ellipticity of the un- 
disturbed free surface of the ocean have been 
neglected. 

We shall make either of two assumptions 
concerning the distribution of density; a) we 
consider the “homogeneous” ocean which has 
uniform density everywhere and is subse- 
quently assumed to be of uniform depth when 
undisturbed; b) we consider a “two-layer” 
ocean which consists of two superposed layers 
each of uniform density. In the latter case we 
shall be concerned only with the motion in the 
upper, lighter layer, and the equations of 
motlon refer to that layer alone. Hence, in both 

cases, the equation expressing the conservation 
of mass is that for an incompressible fluid: 

a a a 
- (r2 sin 6ql) + - (r sin sq,) + - (rq3) = o 
2r as 29, 

(3.4) 
The radial component of vorticity is 

Cl = (curl q)l = 

The first component equation of the vor- 
ticity equation is obtained by performing the 
operation appearing on the right side of (3.5) 
on equations (3.3) and (3.2) in the place of q3 
and q2, res ectively, and making use of 
equation (3 .$ : 

351 251 q 2  Xl 4 3  251 - + q l - + -  -+--+ at ar r a6 r sin 6 3fp 

- - 2 Q cot 6 - a (1, sin 6ql) t 
72 ih 

+ - Q  2 sin 6-1 24 - -Q 2 sin 64, = 
r a6 r 

I a a -- - [- (r sin 6 F 3 )  - - (rF2)] (3.6) 
r2 sin 6 a6 afp 

The rate of chan e of the first component 
of vorticity as we fo 7 low a particle is 

Note that this is not the same as the first 
component of DC/Dt, S being the vorticity 
vector. We shall find it convenient to focus 
our attention on that portion of the rate of 
change of C1 which is associated with the 
particle’s horizontal motion only and therefore 
define 

Tellur VlII (1956), 3 
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We now integrate equation (3.6) over the 
depth of the total ocean in case a) and over the 
upper layer in case b). In both cases the limits 
can be written r = hb (6, y ,  t) on the bottom and 
r = h, (6, q ~ ,  t )  on the free surface with hb being 
constant in case a). Letting 

f = 252 cos 6 (3.9) 

and making use of (3.8) one obtains, after some 
manipulation 

h. 

ha hb 

h. 

+ 252 sin 6 1  :g dr = 

hb 

h, 
I - - - 1: [-$ (r sin 6F.J - 2 (rF2)]dr 

sin 6 aP, 
hb 

( 3 . 4  

h. 
where the symbol ( ) 1 stands for ( ) r - h ,  - 

We now evaluate the frictional terms in 

hb 
- (  )r-hb.  

(3.10). Let 

+Fi*, i = 2 ,  3 (3 .11)  e r2 ar 

where A, denotes the radial eddy viscosity and 
F,*, F3+ are used for the sake of brevity to 
represent the contributions due to the coeffi- 
cient of lateral eddy viscosity AL the magnitude 
of which is so far arbitrary. Assuming that 
A, is independent of 6 and p, and neglecting 
the variation of r within the range of the 
integration, one obtains for the right side of 
equation (3.10) 
Tellus VIII (1956), 3 

hb 
(3.12) 

The pertinent components of shear stress are 

Since the depth of the ocean is much smaller 
than the radius of the earth, only the last term 
in each of the brackets in e uation (3.13) is 
important. Expression ( 3 . 1 3  can then be 
written1 

1 a  
- r -- sin 6 ap, (Wh!) - 

hb 
(3.14) 

where ([ ] g) 1 is an abbriviation for 

[ ] , - h , $ - [  ] r - h b %  ahb and -$ (try%) 
ha 

l For details see: G. W. MORGAN; On the integration 
over depth of the equations for the wind-driven ocean 
circulation; Reference No. 54 - 89; unpublished manu- 
script of the Woods Hole Oceanographic Institution, 
December 1954. 
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Note that the three terms containing the shear 

stresses are approximately - (curl z ) ~  I ,  where 

z is the shear stress vector on the surfaces 
h, or hb. The additional surface terms arise 
from the fact that 

h, I 

e hb 

4. Interior Equations 

In this section we derive approximate equa- 
tions applicable to the interior of the ocean, 
i.e. to a region sufficiently far removed from 
all shores. A more precise definition of the 
mterior region” will be given in Section 5 .  

We assume, as do other investigators, that all 
terms which are nonlinear in the velocity 
components, as well as the contributions of 
lateral eddy viscosity are negligibly small there. 
It is further assumed that the pressure is hydro- 
static everywhere in the ocean, i.e. that all 
terms involving velocity components in (3 .  I) 
are negligible. These assumptions can be 
readily justified by examining the orders of 
magnitude of the terms in the equations. 
Equation (3 .  I) becomes 

“- 

Integration of equation (4. I )  together with the 
boundary condition p = o at r = h, gives 

For the two-layer model, we assume that all 
velocities are negligible in the lower layer so 
that the pressure gradients vanish there. This 
leads to the two relations 

where A Q  is the density difference between the 
two layers. Letting 

D = h, - hb (4.4) 

we can write 
ahs 2D ah, aD 

for the homogeneous ocean (hb having been 
assumed constant) and 

ah, &I 2D ah, AQ dD 

(4.5) _ = _  _ = _  
a6 aa9 JV ap  

( 4 4  _ -  _ -  - 
26-  e as’ap, e ap, 

forzthe two-layer model, where it has been 
assumed that ae < e. 

The momentum equations (3.2) and (3 .3)  
become, using (3.11) and (4.2) 

I ah 
r 2.8 - 2 2 q 3  cos 6 = -g- + 

1 ah, + 2 2 q 2  cos 9 + 2 2 q l  sin 6 = -g  __ - r sin 6 2p, 

Beforc writing the approximate form of the 
vorticity equation (3.10) it is convenient to 

evaluate the term (qlf) I. Applying the 

kinetic boundary conditions 

It. 

11s 

D D - (h,-r) =- (hb - r )  = o Dt Dt (4.9) 

we have 
h .  

Evaluating the right side by means of equations 
(4.7) and (4.8), we have 

h 

hb 
Tellus VIII (1956). 3 
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When this expression is substituted into equa- 
tion (3.10) the last two terms cancel the 
corresponding terms on the right side of 
equation (3.10) as given by expression (3.14), 
provided we neglect the variation of r in 
equation (4.11). 

The resulting vorticity equation (without 
nonlinear and lateral eddy viscosity terms) may 
be simplified further by noting that the slopes 
of the top and bottom surfaces will be much 
less than one, so that q1<q2 .  Thus, only the 
term in dfidt is important on the left side and, 
using (3.8), equation (3.10) becomes approxi- 
mately 

Integration of the approximate momentum 
equations (4.7) and (4.8) leads to 

h, I 2D I h* 
- 2 Q cos 8 J q,dr = - g’ - D - + - (t,a) I 

hh r 26 @ hh 

(4.13) 

11, I aD 
ha r sin 8 ap 

z Q c o s 6 J q z d r =  -g’- D-+ 

(4.14) 

where we have used (4.4) to (4.6) and have 
neglected ql, and 

g’ =g in the homogeneous ocean] 

in the two-layer ocean 

The integrated continuity equation is readily 
shown to be 

a h s  a h, 
- J sin 6qzdr + - J q,dr = o (4.16) 
2’8 ha 2p ha 

This relation is approximate in that the varia- 
tion of r over the range of integration has been 
neglected. Introducing the “transport” com- 
ponents Qz, Q,, equation (4.16) is satisfied by 
Tellus VIII (1956), 3 

defining the transport stream function y by 
the relations 

Equations (4.12) to (4.14) and (4.17) are the 
equations whch we shall apply to the interior 
of the ocean. 

5.  Boundary Equations 

a) Preliminary discussion. 
To conform with reality, the circulation to 

be predicted by theory will have to exhibit 
relatively large velocities and velocity gradients 
at least near the western shore. Hence the 
approximations made in Section 4 for the 
interior region of the ocean cannot be expected 
to hold there. This is otherwise evident from a 
mathematical point of view since the approxi- 
mate equations (4.12) to (4.16) do not con- 
stitute a system of a sufficiently high order to 
yield solutions which satisfy all boundary 
conditions. Hence these equations are not 
adequate for the entire enclosed ocean. 

It has been assumed by other investigators 
(e.g. MUNK, 1950) that the influence of lateral 
eddy viscosity, while negligible in the interior, 
becomes important near the shore. The theory 
based on this assumption has led to a circulation 
pattern which looks remarkably reahtic. As 
was already mentioned in the introduction, the 
theory has been criticized, however, because 
of the need for the empirical choice of the 
value of the coefficient of lateral eddy viscosity 
and the fact that the value which gives the 
proper width to the stream on the western 
shore is larger than one might expect from 
independent considerations. It is useful to 
consider the merits of this “viscous)) theory 
from other points of view. 

It was stated in the introduction that the 
torque due to the frictional forces on ,& 

shores has, at times, been held to be the torqt& 
which balances the torque applied by the winq. 
Now the viscous theor9 shows that the magni- 
tude of the shore friction torque depends on 
the value of the viscosity (the shear stress on 
the shore being proportional to the viscosity 
and the normal derivative of the tangential 
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velocity component, and the latter varying as 
viscosity to the minus two-thirds power). 
Hence, if the argument were correct, the value 
of the viscosity should be chosen so as to satisfy 
the torque balance ! Fortunately the discussion 
in Section 2 relieves us of this requirement. If 
the friction torque is essential to the torque 
balance, it is certainly not the only contribu- 
tion. 

Consider now briefly, from a physical point 
of view, the role of the shore in producing an 
intense current. The solution of the interior 
vorticity and continuity equations (4.12) and 
(4.16) with a realistic wind distribution and 
neglecting bottom friction (see Section 6)  leads 
to a southward transport component over the 
southern interior. The equations do not 
determine the direction of the other com- 
ponent. This evidently depends on the flow 
near the coast. Whichever it is, in a model 
which requires that the circulation be confined 
essentially to the northern hemisphere, the 
stipulation of an eastern or western shore must 
give rise to an intense northward current on 
one of the coasts, since the water which flows 
toward this coast has to be turned to the north 
to satisfy continuity. The stream will have to 
be narrow and hence intense if it is not to 
interfere with the conce t of the interior 
region. Thus, the boun i ary condition of 
vanishing normal velocity on the shore is 
responsible for turning the current northward; 
the mechanism which accounts for the narrow- 
ness of this current (and which will determine 
on which of the two shores the current exists) 
remains to be investigated, but it appears 
reasonable that the usual viscous boundary 
condition of no slip will not have to play an 
essential role in the creation of the stream. This 
is also indicated by the viscous theor 

zero normal derivative of the tangential 
transport is specified on the coast, the width and 
intensity of the stream are essentially unaffected. 
If, however, the no-slip condition is not 
essential, then the function of viscosity may 
not be paramount in the formation of the 
stream. It is 'only necessary to have a system 
of equations which is of sufficiently hi h order 
to be capable of yielding solutions w 8; ch can 
satisfy the condition of vanishing normal 
transport. This, of course, can be accomplished 
by including the nonlinear inertia terms. The 

shows that even if the extreme con c i  tion which of 

inclusion of viscosity, on the other hand, leads 
to a higher order system which requires 
another and, it seems, extraneous boundary 
condition. 

discussion, having been restricte to the 
formative stage of the northward stream, does 
not necessarily suggest that lateral viscosity 
will not be important anywhere in the system. 
Since our study of the moment of momentum 
balance gave no conclusive answer to this 
question, it may be useful to examine it here 
from another point of view. 

Imagine that the flow is contained between 
two solid concentric spheres and that it is 
created by the application of body forces 
uniformly distributed over the depth, rather 
than by surface forces. If there is no top or 
bottom friction we may expect the motion to 
be independent of r and to have vanishing 
radial velocity. The vorticity equation (3.6) 
then becomes 

Breceding It is important to note that the 

d lateral eddy 8 (C1 +f) = (curl B) ,  + (5.1) viscosity terms 
where B represents the body forces. If (curl B), 
is everywhere positive, (as we may expect 

(curl z ) ~  1 ,  the curl of the wind stress, to be), 
and if viscosity is absent, then equation (5.1) 
says that the quantity Cl +fwill always increase 
as we follow a particle. If the system is closed, 
this leads to a nonsteady flow. Hence, for 
steady flow, lateral friction must be important 
at least in some region through which every 
particle will have to pass. 

This conclusion also follows immediately 
from energy considerations. The direction of 
the flow to be expected in the interior is such 
that the body force would do positive work 
on the system. In the absence of lateral eddy 
viscosity, however, there is no mechanism for 
dissipating the resulting increase in kinetic 
energy. 

The author has so far not succeeded in 
carrying out an analogous examination of the 
variation of Cl +f for the actual problem. It 
may be noted, however, that in our formula- 
tion the transfer of the wind stress to the water 
occurs by means of vertical eddy viscosity and 
that, therefore, a mechanism for energy 
dissipation exists even in the absence of lateral 
eddy viscosity. Thus, the energy argument 
breaks down. 

h ,  

Tellur VIII (1956). 3 
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b) A new model. 
The considerations presented so far suggest 

that we adopt a new model for our system. 
Let us imagine the ocean between, say, 10' 
latitude and so" latitude to consist of a southern 
and a northern portion with the dividing circle 
of latitude at about 35'. The southern portion 
is further divided as shown. The figure also 
shows a typical streamline of the anticipated 
circulation, most, or perhaps all, of the stream- 
lines being expected to pass through all three 
regions. 

Fig. I .  The three regions of a new ocean model. 
Ii: interior region; Ib: frictionless stream region; 11: 
northern region; nonsteady and lateral friction effects 

possibly important. 

Our theory will apply to the interior region 
Ii and the boundary region (it will be seen 
that no boundary region is required on the 
eastern shore). In Ii the equations of Section 4 
are applicable. In &, nonlinear inertia, but not 
viscosity, wdl be included. In the Atlantic, I b  
is to include the Gulf Stream north to about 
Ca  e Hatteras. In region I1 nonlinear, viscous 

region includes the Gulf Stream meanders. If 
it turns out that lateral viscosity must be 
present somewhere in the system, its influence 
will be confined to region II. It is quite possible 
that the analysis of the problem in regions I 
and I1 together may have to include instability 
of the meanders, i.e. nonsteady effects. These, 
too, are assumed to be present in 11 only. The 
analysis of the flow in I is based on the assump- 
tion that this flow can be studied without 
inquiring into the conditions in 11. Thus, 
whatever occurs in 11, the flow which emerges 
from there into Ii is such that it obeys our 
interior equations. Similarly, the flow entering 
I1 from I b  is supposed to be determined by 
conditions in Ii and Ib alone. 

an J nonsteady effects may be important. This 

Tellur VIII (1956). 3 

c) Order of magnitude estimates. 
The terms in the vorticity equation (3.10) 

rouped into three categories: (i) 
terms may be non 'i 'near in the velocities, (ii) terms due 
to the earth's rotation, (iii) terms resulting 
&om eddy viscosity. The relative importance 
of each group will be examined in the follow- 
ing subsection by the usual procedures of 
boundary analysis. In the present section we 
carry out a preliminary simplification by 
comparing the relative magnitudes of the 
terms within each group. 

(i) It will be assumed that the shores are 
given by two meridians. We must then expect 
that, in the boundary region, I q31 < I q2 I and 

derivatives parallel to the shore, ($), will 

be much smaller than those normal to the 

shore, (G), Hence, from equation (3.5), 

w - ( I i r  sin 8) ( 2qq2/2v). The magnitude of 
q1 is readily estimated from the kinetic bound- 
ary condition, equation (4.9), in terms of 

2, q3 and the slopes of h, and hb. For the 
%omogeneous ocean q1 is very small due to the 
small surface slope. For the two-layer ocean 
the principal contribution is due to the slope 
of h b ,  the thermocline, the variation of h b  
being of the order of the depth D itself. 

Examining the third inte ral in equation 

fourth terms are negligible compared with the 
third. 

The contributions of j (dC,/dt)dr and (qlCl) I 
are seen to be of equal importance in the 
two-layer case. To compare these terms 
with the remaining nonlinear terms involving 
radial differentiation, we must obtain an 
estimate of 2q2/2r. The second, third and 
fourth terms of equation (3.10) have the 
following orders of magnitude for a two-layer 
model : 

(3.10), it is clear that the P irst, second and 

h, h ,  

ha hb 

(For a homogeneous ocean q1 is so small 
everywhere that all these terms are negligible.) 
The second and third of the above expressions 
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involve a difference in the values at h,and h b  
of the quantities 2q2/2p and q2, respectively. 
If these differences are of the order of the 
quantities themselves, then all terms must be 
expected to be of equal importance. We  
assume in the following that these differences 
are much smaller than the quantities themselves 

he 
and hence that the term (ql CJ.1, predomi- 

nb 
nates. Ths implies that the top and bottom 
shear stresses which constitute the principal 
cause of the radial variation of q 2  are relatively 
unimportant in the boundary region, thus 

essentially uniform with depth. 

what because our estimates of the third and 
fourth terms are likely to be on the high side, 
gl and 2ql/2p having been taken out of the 
integrals and evaluated at r = h b  where they will 
be greatest. Nevertheless it may be important 
to note that the justification for omitting the 
terms under consideration is not beyond 
question. 

(ii) As in (i), the first two terms involving 
52 in equation (3.10) are seen to be of the same 
order, while the third one is negligible. 

(iii) We  turn to expression (3 .12 )  for the 
terms due to eddy viscosity. Of the three terms 
involving radial eddy viscosity the last one will 
predominate. The principal contribution due 
to lateral eddy viscosity comes from F2* and 
is approximately 

This leaving con az ition can probably be relaxed some- 

h. 

dr I 

~ r 3  sin3 6 2p3 
It I 

AL denoting the lateral eddy viscosity. 

becomes 
The simplified vorticity equation (3.10) now 

h 

h b 

h. 

with C 1 r  - ( I j r  sin6) (2q2/2p). 

d) Boundary layer analysis. 
In this subsection the technique of boundary 

layer analysis is employed to examine the 
relative magnitudes of the terms in ( 5 . 2 ) .  This 
technique assumes that a boundary layer type 
of solution exists. If it does, then the procedure 
readily yields an estimate of some of the 
properties of the solution; in this case, of the 
width and intensity of the stream. 

We  first assume that the essence of the 
phenomenon of interest to us will not be lost 
if we neglect the radial variation of the velocity 
components and of AL within the boundary 
layer for the purpose of evaluating the integrals 
in equation (5.2). W e  also assume that the radial 
eddy viscosity term is not important. This 
assumption may not be valid for a homogene- 
ous or a two-layer ocean, or perhaps even for 
a more realistic model, but an argument in 
its favor might be as follows. At the toy 
surface the radial velocity gradient will be 
zero in the absence o i  a meridional wind. 
At the bottom surface the radial eddy 
viscosity may be sufficiently small to keep 
(A,  J 2 q 2 / J r 2 ~ ) r = h b  small. We make the as- 
sumption in spite of the uncertainty of its 
validity because of the desirability of investigat- 
ing the boundary solution in the complete 
absence of friction. Equation (5.2) becomes 

or, using the kinetic boundary conditions (4.9), 

I J3q2 D p 3  sin3 6 A L  -3 2p (5.4) 

Equation (5.4) is rendered dimensionless by 
the following transformations 

( 5 . 5 )  

where q* is a characteristic velocity taken to be 
a measure of the zonal velocity in the transition 

Tellur VIII (1956). 3 
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region from the interior to the boundary layer, 
s is the south-north extent of region I, and 
sin6 is approximated by one. We further 
restrict ourselves for the moment to an homo- 
geneous ocean or to a two-layer model with 
such a deep upper layer that the depth may be 
regarded as uniform. Equation (5.4) then 
becomes approximately 

According to our discussion in Sections 5 a) 
and 5 b), we expect that the nonlinear terms 
will be important in the boundary layer. 
Since they are negligible in the interior, the 
parameter 

(5.7) 

must be much less than one. Hence the terms 
cannot be important in the boundary layer 
unless the derivatives, and possibly the func- 
tions themselves, are large there. We therefore 
set 

p‘ = Nmp”, q2’ = N- nq2” ( 5 . 8 )  

where m, n are to be determined and are 
expected to be positive. We hope to find a 
transformation (5.8) such that q2” (&‘p”), 
491 (O’, 9”) and their derivatives are of order 
one in the boundary layer. The magnitude of 
each term will then be indicated by its coeffi- 
cient. 

The continuity equation (4.16) shows that 
m = n and equation (5.6) becomes 

Since we expect nonlinear and Coriolis terms 

to balance, we must have m=-. The terms 

due to lateral eddy viscosity will be unim- 
portant if N-’/% A~/es~f l= fl’l* A~leq*’!’ 4 I. The 
width of the stream will be of order sN*/s= 
= (q*/p)’’s, and the meridional velocity com- 

I 

2 
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ponent will be of order q*N-’/z =s(q*fl)’’S. 
With p =  2 x 10- l3  * (cm sec)-l, qx = 10 cm 
sec-l this gives approximately 70 km for the 
width of the stream, which is the correct order 
of magnitude. The condition for smallness of 
the friction terms places an upper bound of 
approximately 5 x 106 cm2 sec-1 on the magni- 
tude of AL. Assuming that this corresponds to 
actual conditions and that, therefore, lateral 
eddy viscosity is negligible, the vorticity 
equation (5.4) becomes 

Since, in this equation, the variation of q2, 
q3 with depth has, effectively, been neglected, 
the derivative dldt may be interpreted as the 
rate of change as one follows a vertical column 
of water in its horizontal motion, and the 
equation (5.10) states that the potential vor- 
ticity associated with such a column is con- 
served during its motion in the boundary 
region. Using equation (4.17), equation (5.10) 
can be integrated along a “transport line”, i.e. 
a line of constant y, to give 

ef = F (y)  
D 

where F is a function which must be determin- 
ed by matching the distribution of ([l+f)/D 
in the boundary with the distribution in the 
interior near the edge of the boundary layer. 

e) The momentum equations in the bound- 
ary layer. 

The considerations contained in the preced- 
ing sections may now be applied to the integrals 
over depth of the momentum equations (3.2) 
and (3 .3)  to derive approximate equations 
which are consistent with the assumptions 
made in deriving the vorticity equation. They 
are 

. . D  2q2)dr - 2 9  cos 6 J ha q,dr = 

r sin 6 2p h b  
ha 

2 9  cos 6 J h q2dr= - g ’ T  I D JD - (5.13) 
r sin 6 2p ha 
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We note that the meridional transport compo- 
nent is geostrophic, but that the zonal compo- 
nent is not, the nonlinear terms being as 
important as the Coriolis contribution. 

Neglecting the variation of the integrands 
with depth, we derive an approximate 
Bernoulli equation by multiplying equation 
(5.12) by q2, equation .(5.13) by q3, adding the 
resulting equations to obtain 

(5.14) 

and finally integrating along a streamline (or 
transport line), giving 

@ +g'D = B(y) 
2 ( s .15 )  

where B is an arbitrary function which must 
be determined by matching the boundary with 
the interior solution. 

6. Transformation to Surface 
Coordinates 

Having derived the equations in terms of 
spherical coordinates in an effort not to lose 
any important effects of the spherical ocean 
shape by premature introduction of plane 
coordinates, we are now ready to make this 
transformation to give the equations a more 
familiar appearance. 

Our boundary layer analysis has been based 
on  the assumption that the derivative 2/ap 
represents differentiation normal to the coast. 
Hence two meridians are taken to represent the 
coast lines. The simplest coordinate system 
will then be one in which these are coordinate 
lines. Hence, set 

1 x = R p ,  y = R ( K - @ )  z = r - R  

u = q 3 ,  v = -  Y2 

u= 4 3 ,  V =  - Q 2  

t, =tlpr, z y =  - t f i  1 
where K is the colatitude of the southern 
boundary of region I, R is the radius of the 
undisturbed ocean surface. Note that while y 
measures distance along a meridian of a sphere 

of radius R, x does not measure exact distance 
along a circle of latitude. We  have 

If, instead of x, an alternative coordinate x' 
which does measure distance along a circle of 
latitude were chosen, (e.g. x' = vR sin 6), then 
the most convenient geometrical shape in the 
x'-y plane, the rectangle, would re resent a 

rectangle in the x--y plane which corresponds 
to an ocean whose east and west shores are 
meridians. Moreover, the velocity com onent 

it would not represent the velocity in the 
direction of the constant x' curves.l 

The interior equations (4.12), (4.13), (4.14), 
(4.17) become 

less realistic configuration than I f  oes the 

v would then be an inconvenient variab f e since 

h , - R  
/3 sin 8s vdx = 

h b -  R 

/is - R 
- 2f2 cos 6 f vdz=  - 

ha-R 

(6.6) 

l The reader may wish to contrast our system with 
that of MUNK I950 and MUNK-CARRIER 1950 whose x 
coordinate measures distance, with the result that the 
rectangle in the x--y plane does not correspond to a 
realistic ocean shape. This leads Munk-Carrier to con- 
sider a triangle. The rectangle in our x--y plane is perhaps 
an equally good approximation to the real ocean shape. 

The agreement of corresponding terms in Munk's 
equations and in ours is not complete. This is due to the 
fact that Munk's equations have apparently not been 
derived by a systematic transformation of variables and 
coordinates from a spherical system; hence there is 
same question concerning the relation of Munk's variables 
to those in the actual spherical system. 
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where we have approximated I/r  by I/R and, 
consistent with the assumption aIready made 
in the derivation of the boundary equations, 
have neglected the shear stress at the bottom 
surface z = hb - R. 

The boundary equations ( ~ . I I ) ,  (5.12), 
(5.13)~ (5.1s) become 

I av 
sin 6 ax 

+2QCOS6 -- 
D -=%) (6.7) 

h , - R  g' aD2 
hb- R 2 sin 6 2x 

- 2Q cos 6 J vdz = - - (6.9) 

112 
- +g'D = B(y) (6.10) 

Just as in the derivation of the vorticity equa- 
tion (6.7), the integrals appearing in equations 
(6.8) to (6.9) will be evaluated approximately 
by neglecting the z variation of the integrands. 

7. The homogeneous Ocean with simple 

The homogeneous model is important 
principally because of the insight that will be 
gained into the role of density stratification in 
the formation of the western stream by 
comparing the behaviour of this model with 
that of a two-layer ocean. The most important 
question to be investigated in this connection 
is whether either the variation of the Coriolis 
parameter with latitude, or the density stratifi- 
cation, or both, are indispensable. Because of 
its simplicity, the homogeneous model also 
readily affords insight into the entire phenom- 
enon of the coastal stream. 

Assume the wind stresses 

2 

Wind Distribution 

z r =  - w(1 -$), t y = O ,  0 S y  S S  (7.1) 

s being the south-north extent of region I and 
W being a constant. Equation (6.3) becomes 

where the subscript i is used to denote quantities 
in the interior region Ii. For 6 ~ 5 5 "  and 
K=75", cot65.7 and sw.35 R, so that the 
second term due to the curl of the wind is 
considerably smaller than the first term over 
most of the range. Accordingly, we neglect it. 
Using equation (6.6) 

ayi 2yw 
ax eps2 
_ -  - -- (7.3) 

2w 2yW dl u.=- ( x + I )  +- - (7.5) 
' Q B S 2  eBs2 dY 

where l (y )  is an arbitrary function. Since we 
do not expect a strong current on the eastern 
coast, (the impossibility of such a current will 
shortly be demonstrated), we anticipate that 
the interior solution will be valid all the way 
to this coast. Hence, we want U=o at x=u, 
x=o and x = a  denoting the western and 
eastern shores. Thus in the region Ii 

(7.6) 

2w 
(7.7) u. = - - (u - x) 

' eBs2 
We now examine the boundary equations. 

From equations (6.6) and (6.7) and neglecting 
the radial variation of tr, 

Since g' =g in the homogeneous case, it is clear 
from equations (6.8) and (6.9) that the surface 
slopes will be very small and that, for a reason- 
able average depth, the depth will be essentially 
uniform. Expanding cos6 in a power series 
about 6 =  K and retaining the first two terms 

2 L 2 ~ 0 ~ 8 ~ = 2 Q c o s  K + 2 Q  - Y sin K (7.9) 
R 

or 
2Q . f = fK + BQ, j 3 ~  = - sin K, fK = 2 f2 cos K R 

(7.10) 
Tellus VIII (1956). 3 
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and equation (7.8) becomes and, from equation (6.6) 

where G(y) = DF (y), D being regarded 
constant. 

According to boundary layer analysis, as 
discussed in Section 5 ,  the 212x derivatives are 
large only in the boundary layer and decrease 
as one approaches the interior. The transition 
from boundary to interior regions is, of course, 
continuous, but, to simplify the terminology, 
let us define some suitable distance x = L  as 
the "edge" of the boundary layer, L being 
Iarge enough so that the boundary layer 
solution there is essentially equal to the interior 
solution in the same neighborhood. W e  then 
have 

f ~ + r g K y = G ( y i )  at x = L  (7.12) 

But, from equation (7.6), 

since we expect L e a ,  and where U* denotes 
the zonal transport into the boundary layer. 
Hence 

fK B K Y  = G (u*)') (7.14) 

(7.15) B K  and G(y)  = f K  + @ Y 

Substitution into equation (7. I I) yields 

- - - sin2 ( K  - 6)  D ~ K Y  (7.16) 

If we consider a closed ocean basin, the coast 
x = o and the southern boundary y = o form a 
continuous transport line so that y(o, y) =o .  
This boundary condition together with the 
matchng condition as the interior is ap- 
proached (equation 7.13) determine the con- 
stants of integration. The solution is 

Thus the theory predicts an intense northward 
stream on the western coast, the width of the 
stream being given by, say, 

aad the intensity of the northward velocity 
being of order s(u* pK)'/*,  where u* = U*/D.  
These results are seen to agree with the orders 
of magnitude previously derived directly from 
boundary analysis considerations in Section 
5 d). Expressions (7.17), (7.18) are simpler and 
more revealing if we set 

x sin ( K  - $) = X (7.19) 

X measuring true distance along a circle of 
latitude. 

Curves I a of Figures 2 and 3 show the 
variation of y /  Us and V/  U* with dimensionless 
distance XIS from the western shore at y = s  
for values of U* (105 cm2 sec-1) and s (2 x I O ~  
cms) corresponding to the North Atlantic and 
for a depth D (or D* in the terminology of 
Section 8) of 4 x 105 cms which corresponds to 
the total depth of the ocean. Hence the graphs 
may be interpreted as representing the Gulf 
Stream which would exist if the motion were 
barotropic. The stream is quite narrow (its 
width is about 40 krn); the transport is very 
large near the coast and decreases very rapidly 
as the distance from the coast increases. The 
predicted flow is seen to exhibit what might 
be regarded as the principal qualitative property 
of the observed circulation-a westward 
interior transport being turned into a narrow, 
intense stream near the western coast-and the 
width of this stream has the appropriate order 
of magnitude. 

The results obtained may be given a very 
simple physical interpretation. The vorticity 
equation (6.7), for D essentially constant, 
states that the absolute vorticity of a particle, 

+J is conserved. Since f increases as the 
particle travels northward, c1 must decrease, 
and since cl (or =) av is . approximately zero 
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when the particle enters the boundary region 
i t  must become negative. Particles which ap- 
proach the coast at low latitude, i.e. with 
smallf; must undergo a large increase i n f t o  
reach a certain more northerly latitude, and 
hence acquire a large negative value of (, (or 
av/aX) .  Those approaching with larger f need 
not suffer such a great change infto reach the 
same northerly latitude and hence acquire less 
negative 2vlaX. This gives rise to the expo- 
nential type of decline in current intensity 
from the coast to the interior. 

It is now clear that the interior transport 
approaching the west coast could equally well 
be turned into an intense southward current 
if we did not stipulate that y = o be a streamline 
in the boundary region, i.e. that the circulation 
be enclosed on the south. Following the same 
physical reasoning as before, a southward 
current means a decrease infand hence positive 
JvlaX to conserve vorticity. Further, the 
particles approaching the coast with larger f 
must acquire larger positive than must 
those approaching with smaller f: Hence we 
obtain a boundary layer solution with v having 
its greatest negative value at the coast and 
increasing to zero as the interior is approached. 

Any flow pattern intermediate between the 
two already discussed, with a portion of the 
westward interior current being turned into 
an intense northward stream and the balance 
into an intense southward stream is also 
possible. The entire infinite family of solutions 
is obtained by stipulating the boundary 
condition 

y (0, y )  = ysU*, o 5 y 5 I .  (7.20) 

This gives " 
- (!?#a x 

y = U * ( y s - y ) e  + U*y (7.21) 

Thus all particles approaching the boundary 
region north of y = ys (but, of course, south of 
y=s to remain within region I) turn north- 
ward, those approaching between y = o and 
y = ys turn southward, the transport line 
y~ = U*ys dividing at x = o to form the shoreline 
both south and north of y = ys. 

Which of all these solutions is the appropri- 
ate one depends on the appropriate choice of 
the boundary condition and this in turn is 
Tellur Vlll (1956). 3 

governed by considerations of mass conserva- 
tion in the overall system. 

Other solutions may be obtained, for 
example, by giving y(o,  y) a negative value. 
This gives a northward stream consisting not 
only of the water approaching the coast from 
the interior and being turned north, but also 
of water introduced into the stream in the 
boundary region across y=o, this extra flow 
preventing the transport line y =o from 
reaching the coast. 

Another important result which is evident 
immediately on physical grounds is that the 
factors which create an intense stream on the 
west coast could not create a similar stream on 
the east coast. To show this, let us suppose that 
the zonal transport component in the interior 
is eastward. If this transport is to turn north- 
ward, f must increase along a transport line, 
hence av /aX must become negative. Further, 
particles approachmg with smaller f must 
acquire larger negative JvlaX,  than those 
approaching with greater f: Hence the solution 
would require positive v ,  negative &/ax, and 
v tending to zero as one leaves the boundary 
region and approaches the interior region. 
Obviously, these are incompatible conditions. 
A similar argument rules out a southward 
stream. Thus we see that a boundary layer type 
solution is possible in region I if the zonal 
transport is westward, but not if the zonal 
transport is eastward. 

Mathematically, this is seen as follows. Since 
yi is zero on y = 0, and since Ui = - ay;/ay> o 
for an eastward interior current, yi would be 
negative for y>o; in particular yi would be 
negative at the edge of the intense stream on 
the east coast. The matchmg with the boundary 
layer solution, analogous to equation (7.12), 
would then lead to an expression for G(y) 
analogous to (7.15) with a minus sign in front 
of the term containing y .  This gives rise to a 
plus sign for the y term in the equation analo- 
gous to (7.16) for the boundary layer stream 
function, and hence to trigonometric instead 
of exponential solutions. Hence no boundary 
layer type solution is possible. 

To avoid confusion, it should be emphasized 
that the above conclusion does not in an wa 
conflict with the well known problem oLdea{ 
irrotational fluid theory, in which a flow 
impinges on a solid boundary placed normal to 
the undisturbed flow at infinity. This flow is 
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not of the boundary layer type and the tan- 
gential current is just as wide and no more 
intense than the normal current. This type of 
flow was excluded from our investigations as 
soon as we made approximations appropriate 
to boundary layer type solutions. 

It appears that the simple homogeneous 
ocean model contains the essential features of 
the type of circulation one expects. In the 
following section we investigate to what 
extent the two-layer model alters the phenom- 
enon. 

8. The Two-Layer Ocean with Simple 
Wind Distribution1 

We consider the same problem as in Section 
7 and make the same a proximations except 

into account. The interior relations (7.3) to 
(7.7) remain unchanged. We shall require a 
relation between Ux and Di at the edge of the 
boundary layer. From equations (6.4) and 
(7.7), and setting 2J2 cos@=f-fK+B~y, we 
have 

that now the variation o P the depth D is taken 

where C(x) is still arbitrar . If D* is the depth 
at y = o and at the edge o Y the boundary layer 
x = L, then C(L) = D*2 and 

Some weeks following the final preparation of this 
paper Dr. J. G. CHARNBY (1955) published a theory of 
the Gulf Stream much like the one contained in the 
following section. Charney’s aim is to study a two-layer 
model which is fashioned to fit as closely as possible 
the observed topography of the thermocline between 
the Florida Straits and Cape Hatteras and the observed 
volume transports in the Stream, in order to determine 
how closely the theory can reproduce the observed flow. 
By contrast, this author’s primary goal has been to criti- 
cally analyze some of the questions connected with the 
formulation of a suitable theory and the development of 
the pertinent equations, and to investigate the mechanism 
which gives rise to the intense coastal current. This is 
done with a view to clarifying such problems as the roles 
of density stratification and the variation of the Coriolis 
parameter, the possibility of the existence of a current on 
the eastern boundary, the direction of the intense current, 
etc. In order not to obscure any of these aspects of the 
problem the simple model used to study the homo- 
geneous ocean is retained in this section, where our 
theory is applied to the two-layer system, and no attempt 
is made to fit the model more closely to the Gulf Stream. 

Another expression for Di2 (x, y )  may be 
derived by using the momentum equation 
(6.5). It is approximately 

+ Cl ( Y )  (8.1 c) 

Comparison with equation (8.1 a) yields 

2 Wsin K C (x) = Do2 + ( a - X )  (8.2) 
eg‘ 

where D, is a constant and denotes Di (a, y) .  
Instead of using the vorticity e uation (6.7) 

use the momentum equation (6.9) and the 
Bernoulli equation (6.10). From equations 
(6.9) and (6.6) 

it is more convenient, in the two- P ayer case, to 

(8-3)  
g’ y =- 0 2  + c, ( y )  
2 f  

where C3(y) is arbitrary and is determined by 
matching ‘y and D with the interior solutions. 
We have from equations (7.13), (8.1) and (8.3) 

whence 

Substituting in equation (8.3) and solving for 
D2 we obtain 

Equation (8.6) provides one relation between 
the unknowns y and D. A second relation is 
obtained from the Bernodi equation (6.10). 
The unknown function B(y)  is again de- 
termined by matching with the interior 
solution. As one leaves the boundary region, 
equation (6.10) becomes 
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giving 
B ( y ) = g ’ [ D * 2 + Z f X y + p y 2 ]  BK ‘’I (8.8) 

g ’ 

Substitution into equation (6.10) yields 

(8.9) 

Finally, replacing v by (I/D sin 8) 2y/2x from 
equation (6.6) and eliminating D by using 
equation (8.6), the following equation for y is 
obtained : 

The a propriate boundary condition is that 

particular vaIue to be chosen for y(o, y) depends 
on continuity considerations for the entire 
system. We shall restrict our numerical 
solutions to the model discussed in Section 7, 
i.e. to the case where the circulation is confined 
to a region north of y =o, so that 

Y (0, y) = 0 (8.11) 

“ w e  first n o Z  the very important resX 
2y/2x=o for all x if P K = O .  Thus, if the 
variation of the Coriolis parameter with 
latitude were neglected, no boundary stream 
could be produced. From a different point of 
view, the result shows that the variation in 
depth alone and its effect on the potential 
vorticity (equation (6.7)) cannot ive rise to 

as in the homogeneous model, the variation of 
f is the essential phenomenon and it remains to 
investigate how the resulting flow pattern is 
modified by density stratification. More 

hysical insight into this conclusion can perhaps 
ge gained by the following consideration. 
Consider the change of relative, vorticity 5, 

x = o  1 e a streamline. As in Section 7 the 

--- 

an intense stream. Thus, in the two- f: ayer ocean, 
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(or &$) as one follows a streamline. 

Since, accordhg to equation (6.7), potentialvor- 
ticity is conserved, a change in cl will be due 
either to a change in f or to a chan e in D. We 

of D along a given streamline is due solely to 
a change in f: Hence, i f f  is constant, is 
constant along each streamline and since it is 
approximately zero near the edge of the 
boundary layer it must be zero everywhere. 
Thus the existence of /?K is the primary cause 
of the henomenon. Inasmuch as BK together 
with t%e small value of g‘ in the two-layer 
model ive rise to a considerable change of 

turn effects the potential vorticity and hence 
the current, the latter is actually dependent on 
the depth (and hence on the density stratifi- 
cation) as well as on BK. 

Proceeding now with the analysis of the 
differential equation (8.10), we replace x b X 

the non-dimensional quantities X, T, i j  by the 
relations 

see from equation (8.6), however, t a at a change 

depth aong B a streamline, and this change in 

according to equation (7.19) and then intro B uce 

x=sx, y = q ,  y=u** 

so that i j  approaches 
interior. Equation (8.10) becomes 

as one approaches the 

{[& + Si j  +W2]’I) - (& + Sij  + 2 y i j  - J 2 ] ” 8 }  

(8.13) 
where 

Introducing the transformation 

equation (8. I 3) becomes 

{ [ E  + 6@ + @z]’”r - [E + 6w + 27W -F2]’/*} (8.16) 

In this form all the parameters of the problem 
appear in the two dimensionless groupings E 
and 6 only. The meaning of 6 is evident. The 
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significance of E is readily seen from equation 
(8.6). In terms of the dimensionless variables 
we have 

D2=D*2+-  ( f K  + fid u * s ~  - u* p&y2 

2' g' 
(8.17) 

Thus U* pKs2/g' is a measure of the change of 
the square of the depth along a streamline and 
E'/Z is the ratio of the characteristic depth D* 
to the characteristic change of depth. 

In Section 7 the equations were applied to 
the homogeneous ocean by neglecting the 
variation in depth. Hence, it is to be expected 
that equation (8.16) will yield the solution for 
the homogeneous ocean when E > I ; i.e. as far 
as the boundary region is concerned, a two- 
layer model, the depth of whose upper layer 
is very great compared to the change of that 
depth, behaves like a homogeneous model. 
The approximate analytical solution for F > I 
is obtained in the following manner. The first 
bracket on the right-hand side of equation 

(8.16) is approximated by E .  The expressions 
inside each of the other brackets are divided 
by E and the brackets expanded in binomial 
series retaining terms of order &-l. This yields 

(?)2 &'I1(Y - y)z (8.18) 

Imposing the boundary condition 7L, (0, 7) = 0, 
the solution of equation (8.18) is 

(8.19) 

whch becomes identical with the solution 
obtained previously (equation 7. I 7) upon 
transformation to the appropriate variables. 

If we deal with a homogeneous ocean, E will 
in general be large because g'=g and t h s  
quantity is of the order of 500 times as great 
as g' in a usual two-layer model. If we deal 
wthi a two-layer model E may be made large 
by making D* large. The preceding analysis 

u' 0' I q' K a 
d L I  C I I  I 

C ! ! ! ! ! ! 4  

Fig. 2. Dimensionless transport function vs. dimen- 
sionless distance from western coast at northern bound- 
ary of region Ib for various values of the pertinent 

paramaters. 

Fig. 3 .  Dimensionless northward transport vs. dimen- 
sionless distance from western coast at northern bound- 
ary of region Ib for various values of the pertinent 

parameters. 
Tellus VIII (1956). 3 
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the southern boundary tends to produce a 
somewhat narrower stream, but the effect is 
quite small. Curve I b corresponds to a 
homogeneous ocean with the values of U*, 
D*, s and 6 equal to those of the upper layer 
of the two-layer model of Curve 2 a. These 
curves thus afford a revealing comparison of 
the behavior of the two models. The widths of 
the Streams are practically the same. Thus, the 
question of whether the bottom surface is 
solid, or an interface between two layers of 
slightly different density in a baroclinic model, 
does not have much bearing on the formation 
of the Stream and its width. Another interesting 
comparison may be made between Curves z a 
and I a, the latter (see Section 7) corresponding 
to a homogeneous ocean whose depth is that 
of the total two-layer model with the same 
values of U*, s, and 6 and which therefore 
represents the Stream that would exist if the 
motion were barotropic. 

Curve 2 b represents the same situation as 
z a except that the density difference is double. 
Comparison of the two curves demonstrates 
the relative insensitivity of the stream forma- 
tion to this factor. 

Curve 3 applies to an ocean with the same 
values of E and 6 as 2 a but different U*, s, g‘, 
D*. The drastic decrease in the width of the 
current may be seen from equation (8.15) to 
be due primarily to the increase in s. 

In Figure 3 the dimensionless transport 
&j/i?X is plotted against X for the systems 
discussed above. The transport shows a general 
tendency to decrease monotonically with X 
due to the decrease in velocity. This tendency, 
however, is counterbalanced by the monotonic 
increase of the depth, so that in some cases the 
transport first increases to a maximum and then 
decreases. This is the case in 2 a, 2 c and 3 
where the transport starts from zero due to 
the fact that the depth vanishes at y=s, X=O 
in these cases; (see the following discussion of 
this point). The narrow streams of cases I a 
and 3 give rise to very large transports extend- 
ing over a very narrow region. The transport 
adjacent to the coast in the homogeneous 
model I b is much greater than that in the 
corresponding baroclinic model 2 a due to the 
latter’s very small depth near the coast. The 
transport in I b drops off much more rapidly 
with X ,  however, so that the widths of the 
streams are about equal (Fig. 2). 
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Fig. 4. Constant depth lines (dashed) and “transport” 
lines (solid) in region Ib for case z a  of Figs. 2 and 
3 corresponding approximately of the formation of 

the Gulf Stream. 

shows that in terms of the variables of equation 
(8.16) the boundary solutions ij for a homo- 
geneous ocean and a two-layer model are 
identical provided E is large and has the same 
value in the two cases. 

Equation (8.16) has been solved numerically 
for various values of E and 6 and pertinent 
results are plotted in Figures 2 to 4. 

Figure 2 shows the variation of the dimen- 
sionless transport function ij with dimension- 
less distance X from the coast at the northern 
boundary of region Ib. The magnitudes of 
BK,  U*, s, g’, D*, E (see legends of Figs. 2, 3) 
for Curve 2 a correspond to a baroclinic model 
of the Gulf Stream except for the fact that the 
southern boundary of the region I is at the 
equator (6=0). The width of the Stream is, 
say, 150 km, a very reasonable value. Curve 
2 c represents the same situation with 6 = I, 
i.e. with the southern boundary at approxi- 
mately 15’ latitude. This northward shift of 
Tellus VIII (1956). 3 
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Figure 4 represents a typical pattern of 
transport and constant depth lines (case 2 a). 
The transport lines near the coast tend to bend 
away from the latter after first approaching it 
due to the decrease in depth near the coast. 
This decrease tends to cut down the transport 
near the coast and hence to force the stream 
seawards. 

Our results indicate that the density stratifi- 
cation influences certain aspects of the stream 
formation, but that it is a modifying factor 
rather than a fundamental one insofar as our 
problem is concerned. One important point 
must be discussed in this connection, however. 

Equation (8.17) shows that, for fixed y, the 
depth is smallest at the boundary and that it 
becomes zero when 

Thus, if E <I, the solution cannot be valid for 
?>&'/a and the value 7 =&'/a might be interpreted 
as the latitude north of whch a new regime 
of flow must take over. Since the velocity 
remains non-zero at that point we must 
actually except that the solution will break 
down at some distance south of =E'/P. 

The preceding remarks apply to the be- 
havior of the boundary solution when an 
arbitrarily fixed transport U* with arbitrary 
depth D* at y = o  flows into the boundary 
region. If, however, we require that the bound- 
ary solution be matched to an interior solution 
the validity of which is to extend up to the 
eastern shore, then D* and U* are not inde- 
pendent. From equation (8.2) 

2 Wu sin K 
C(L) = D*2 4 Da2 + (8 .21)  

eg' 
whence, using the definitions of E and Ux, 

D*2 
D*2 - Da2 &---- (8 .22)  

Hence, in this case &>I and takes on its smallest 
value, one, only in the extreme case when 
Da=o. Since the meridional transport is 
independent of x in the interior, this extreme 
case would imply infinite meridional velocity 
at x=u.  

It is worth noting that when the model under 
investigation does not represent an enclosed 

ocean, but rather a system in which northward 
flow is allowed to enter the stream across the 
boundary y = o  so that the value of y on the 
western shore is negative, then, from equation 
(8.17), the depth will become zero for a value 
of 7 which is smaller than ex/¶, so that the 
solution may break down for 7 < I even if it 
is matched to an interior solution which is 
valid right up to x = u .  It appears that this 
breakdown of the solution when E is sufficiently 
small constitutes the major difference in the 
dynamics of the streams in a two-layer and a 
homogeneous model. 

The theory predicts that the meridional 
velocity is a maximum at the western shore. 
This appears to violate completely the condi- 
tion that a viscous fluid should adhere to a solid 
boundary, a condition which was specifically 
excluded by our approximate analysis. This 
violation becomes less serious than appears at  
first sight when one considers that the bound- 
ary may be interpreted as a water boundary 
with the region between the stream and the 
coast acting as sub-layer similar to the laminar 
sub-layer encountered in turbulent boundary 
layer flows. 
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