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Abstract 
The previous work by ROSSBY and CAHN on the adjustment of a non-balanced velocity 

field towards geostrophic equilibrium has been generalized to incorporate the corresponding 
process in a stratified but incompressible fluid. It is shown that the character of the process 
essentially depends upon the width of the current, the velocity profile in the vertical and 
the vertical density gradient. As long as the vertical density gradient is small the adjust- 

ment of the mean motion of the fluid [ Udz exactly corresponds to the one described 

by CAHN. O n  the other hand vertical variations of the unbalanced motion will set up 
internal oscillations which have considerable larger (vertical) amplitudes than is found for 
the adjustment of the mean motion. Furthermore, the speed of propagation of the gravity 
inertia waves thus generated (cK) is considerably smaller than that of the waves generated 
during the adjustment of the mean motion (co). For values of the vertical density gradient 
as found in the oceans CK < 0.05 co. In the final state of equilibrium the mean motion of the 
fluid will be approximately the same as before the adjustment, while a considerable smooth- 
ing of the vertical gradients of the velocity field will take place, the more the broader the 
original current is. 

cn 1 

I. Introduction 

The motion of the atmosphcre as well as the 
oceans takes place under approximate geo- 
strophic balance. This has been known for a 
long time and has been used both in meteorol- 
ogy and oceanography to compute the state 
of motion more accurately than it can be 
observed directly. The geostrophic relation 
has been very useful as a diclgnostic tool. The 
relation is merely an expression for the fact 
that usually the horizontal acceleration is 
one order of magnitude less than the Coriolis 
force and the horizontal pressure gradient. 
Thus it may be neglected in a first approxi- 
mation. However, then it also follows that 

1 This investigation has been supported by grants from 
the Knut och Alice Wallenberg Foundation and Statens 
Naturvetenskapliga Forskningsrid. 
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the geostrophic relation in itself cannot be 
used as a prognostic tool. Having realized this 
fact meteorologists for a long time have been 
studying the departures from geostrophic 
equilibrium to obtain a better understanding 
of the atmospheric processes and to derive 
relations that might be useful in forecasting. 
It must, however, be admitted that in most 
cases these attempts have not been very 
successful, probably to a large extent depending 
upon the cGffculty of making the proper 
approximations in order to separate various 
physical processes from each other. 

Lately CHARNEY and collaborators, however, 
(cf. CHARNEY 1949) have been able to develop 
useful methods for forecasting the upper flow 
patterns in the atmosphere by using the 
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geostrophic approximation in the barotropic 
vorticity equation. This procedure essentially 
means a filtering out of the inertia oscillations 
that necessarily must develop for the adjust- 
ment of the wind field and mass field to each 
other in order to retain an approximate 
geostrophic equilibrium. One assumes that 
this adjustment is complete and takes place 
with an infinite speed and that the displace- 
ments that must occur are small in comparison 
to the large-scale motion of the atmosphere. 
The method has been quite successful and gives 
a first approximation of the development 
of the mean field of motion that even may be 
useful in practical forecasting. The realiza- 
tion of the physical sequence of events made 
it possible to apply the proper approxima- 
tions at the right instant in the process of 
the development of the equations. 

Undoubtedly there exist cases where it is 
not permissible to neglect this adjustment 
process towards geostrophic equilibrium to 
obtain acceptable results. This is probably still 
more important when trying to study the 
changes of the vertical variation of the wind 
field, where the stratification of the atmosphere 
plays an important role for the adjustment 
process. It is quite well-known, both from 
synoptic experience and from theoretical 
investigations (ROSSBY, 1938), that the adjust- 
ment of an unbalanced current in a stratified 
fluid towards geostrophc equilibrium in- 
volves a considerable redistribution of the 
mass field. We  shall also see that the speed of 
propagation of the internal gravity-inertia 
waves, by which the adjustment takes place, 
is considerably smaller than the speed of the 
waves that develop during the adjustment in a 
homogeneous (barotropic) atmosphere. It is 
likely that some of the systematic errors that 
appear when forecasting with, for example, 
a two-parameter model of the atmosphere 
(CHARNEY, PHILLIPS, 1953) are due to the 
neglect of this adjustment process. To account 
for the apparence of such inertia-gravity 
waves in the process of numerical forecasting 
one may proceed in different ways. One may 
use the hydrodynamic equations without ever 
introducing the geostrophic approximation. 
This would probably increase the amount 
of computations for a 24-hour forecast 
by several magnitudes. I t  therefore seems very 
desirable to try to develop some simpllfied 

method in which the essential characteristics 
of the adjustment process have been considered. 
In order to be able to do this we must learn 
more about the adjustment of the flow and 
the pressure field to each other in idealized 
cases. W e  already now know some of the 
main features of ths  process essentially through 
the work by ROSSBY (1938), CAHN (1945) and 
RAETHJEN (1950). However, as yet no syste- 
matic treatment of a stratified atmosphere has 
been presented. Some principles have been 
derived by ROSSBY, but in particular a study 
of the process of adjustment in a fluid with a 
continuous density distribution is lacking. 

This problem of maintaining an approximate 
geostrophic balance is also an important aspect 
of the dynamics of the ocean currents. The 
main difference from a hydrodynamic point 
of view between the oceans and the atmosphere 
is, of course, the facts that the sea-water may 
be considered as an incompressible fluid, the 
oceans have an upper free surface and the 
density difference between the top and the 
bottom is quite small. These characteristics 
simplify the mathematical treatment consider- 
ably and we shall therefore first discuss the 
adjustment towards geostrophic equilibrium 
in an incompressible, stratijiedjuid of an approxi- 
mately constant depth, D. These restrictions will 
be removed in part I1 of this paper, which 
is going to appear in a later issue of this journal. 
It would, of course, be possible to derive the 
equations for the most eneral case first and 

to the more special problems. The procedure 
followed here is used primarily because the 
dwussion of the upper boundary condition is 
believed to be more clear in this way, secondly 
because the method of approach is most easily 
followed in a relatively simple case. 

ROSSBY in 1938 described the general features 
of the adjustment within an infinite current 
in a homogeneous incompressible fluid of 
uniform depth, initially not in geostrophic 
equilibrium. Let us assume that a certain 
amount of momentum has been communicated 
by some process (e.g. wind action) to an 
infinite strip parallel1 with the x-axis. However, 
no pressure gradients exist a t  t h s  time. The 
momentum of the fluid is associated with a 
certain Coriolis force which will try to deflect 
the moving particles towards right (looking 
down-stream). Gradually fluid is accumulated 

then simplify the formu P ae obtained to apply 

Tellus V (1953). 3 
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to the right of the current while the free 
surface is lowered to the left of the current. 
In such a way the proper pressure gradient is 
built up and geostrophic equilibrium is ap- 
proached. Rossby pointed out that certain 
inertia oscillations must be enerated and a 
certain portion of the initia !? energi of the 
current is thus transformed into suc oscilla- 
tions. It was also shown how these considera- 
tions for the adjustment of a current in a 
single homogeneous layer may be generalized 
to the corresponding process in a fluid con- 
sisting of two or several homogeneous layers 
on top of each other but with different den- 
sities. The internal boundaries between the 
layers will be considerably more deformed 
than the free surface if the density differences 
between the various layers is small. In this 
case proportionally a larger portion of the 
lunetic energy of the initially unbalanced 
current is transformed into inertia-gravity 
oscillations. 

Recently also RAETHJEN (1950) has published 
a study of the adaptation of the wind and 
pressure fields towards each other when ini- 
tially not in balance. He points out that a 
current extending through the whole atmos- 
phere will change very little during the adjust- 
ment, while a current only occupying a 
certain fraction of the atmosphere will be 
changed considerably more. 

The papers by ROSSBY and RAETHJEN were 
mainly devoted to a study of the final state of 
equilibrium. No attempts were made to 
study the process of adjustment. This problem 
was attacked by CAHN (1943) who solved the 
problem for a single homogeneous layer of 
fluid. He demonstrated how the energy of the 
inertia oscillations very rapidly is carried away 
from the source region by damped travelling 
gravity waves the speed of which is vgBo (Do 
being the depth of the fluid). The fmal state of 
equilibrium is very closely reached already 
after a few oscillations. 

The problem of how the adjustment of the 
velocity field towards geostrophic equilibrium 
takes place in a stratified fluid has remained 
unsolved up to the present time. It is the pur- 
pose this paper to discuss this problem in 
some detail. In order to describe the physical 
process most clearly we shall first treat a case 
similar to the one discussed by ROSSBY and 
CAHN (1.c.). 
Tellus V (1953), 3 

3 75 
2. The basic differential equations 

Let us consider an incompressible fluid of 
the average de th, Do, which has an infinite 

A certain vertical density gradient exists in 
the fluid. We assume that the density is givenby 

extent in the f: orizontal directions x and y. 

@ = Q, ( I -a0)  (1) 

where cs is a function of the vertical coordinate 
(z) being zero at the bottom and unity at the 
upper free surface. Thus, both the bottom 
and the free surface are assumed to be isosteric 
surfaces. It will furthermore be assumed that 
the vertical density gradient is small (a < I).  

We shall consider an infinite current, uo 
along the x-axis which is assumed to be in- 
dependent of x (a/& E 0). Thus it is sufficient 
to study what happens in a plane per endicular 
to this axis (yz-plane). Let E an%c denote 
the horizontal and vertical displacements in 
this plane. Through making use of the assump- 
tion of incompressibility we obtain the fol- 
lowing continuity equation 

(4 a& ac 
ay az 
- + - = o .  

We want to use 0 as our independent vertical 
coordinate and transform (2)  accordingly. We  
may write L ( Z )  + - = D o + -  ai- ai- (3) 

ao 0 20 2a 

Jz/aa is an expression for the vertical stability 
of the fluid and ( 2 ~ / & ) ~  = Do is the value of 
az/Jcs in an undisturbed state. We  have here 
assumed that a is a linear function of Z. Now 
the assumption of small perturbations means 

? C  

d4 - Q DO a0 (4) 

and if p = [ /Do  we may write ( 2 )  as 

The two horizontal components of the equa- 
tion of motion are 

dl1 = f v  
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where already the assumption of 3/Jx = o has 
been introduced. f is the Coriolis parameter 
and is assumed to be constant. ti and v are the 
horizontal com onents of velocity along the 
x and y-axes an CF p denotes pressure. Neglecting 
higher order terms we obtain by integration 
of equation (6) 

El = El0 + (f-$) at1 e.  

W e  shall u priori exclude the possibility for 
dynamic instability to occur and assume 
2uo/ay < f: It is then seen from equation (7) 
that any geostrophically balanced field of 
motion may be added without changing the 
character of the adjustment process. W e  may 
then simply assume that no horizontal pressure 
gradients exist initially i.e. the density surfaces 
as well as the free surface are horizontal. Thus 
u0 denotes the initially unbalanced field of 
motion along the x-axis and 

u = uo + f&- (8) 

In equation (7) we must transform +/ay into 
an expression only containing our depending 
variables defined previously. By making use 
of the hydrostatic relation and assuming that 
no external forces act on the free surface we 
obtain 

D 

p = g s  z edz (9) 

where D is the actual depth of the fluid and g 
acceleration of gravity. Through integration 
by parts and making use of (I) in differen- 
tiated form we get 

I 

p = 9 (eS D - QZ) + UQog J rdo (10) 

es denotes the density at the free surface and z 
is the height of the density surfaces (function 
of o). Now 

U 

Differentiation of (10) with respect to y, 
keeping o constant, gives 

Combination of (I I) and (12) yields 

Now 

where zo is the height of the o-surfaces in the 
undisturbed state. Thus 

Assuming small perturbations allows us to 
neglect the convective accelerations in dv/dt. 
Furthermore, CI < I and thus e3 may be ap- 
proximated by eo in (13) .  With the aid of (13) 
and (IS) we may thus transform (7) into 

I 

-= J V  - fu - g - - q D , ~ * d o .  2D (16) 
at aY aY 

U 

The three equations (s), (8) and (16) and the 
definition of v 

a& 
at 

v = -  

represent a complete system of equations for 
the four dependent variables e, p, u and v as 
functions of y,  o and t. W e  observe that 
D = Do (I + ,us), index “s” indicating values 
at the free surface of the fluid. W e  shall next 
eliminate three of those variables in order to 
obtain a single differential equation with only 
one dependent variable. Because of the 
character of the boundary conditions it is 
most suitable to retain p. It is easily verified 
that the following differential equation is 
obtained 

If we introduce the vertical velocity as a new 
variable defined as 

a 
3t 

w= Ilfl’ 
we get 

P W  a 2  w az W 
__ =-j--- agDo-. (2.) 
at22Crz 2a JY 

Exactly the same equation is satisfied by v. 
Tellus V (1953). 3 
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It is suitable to introduce non-dimensional 
variables here. In analogy with Rossby we 
may define a "radius of deformation" R = 

= 4a-s f-'. As unit of time we choose 
f-1. The new non-dimensional variables are 
then defined by the following relations 

E = RE' 
I Y  = Rrl 
t =z.f- '  (21) 

[ v  = R-f. V 
p, tu and 5 are already non-dimensional. 
Equation (20) now becomes 

-1 (22) 

We also shall need a relation between W and 
V which is obtained from ( 5 )  by differentiation 
with respect to time 

3. Adjustment within a single stratified 
layer of fluid 

a. Botlndary and initial conditions 
The bottom of the Jltlid remains fixed at all 

times and thus 
G = 0: W E  0. 

At the free surface we get by putting G = I in 
equation (16) and introducing the expression 
for D 

(24) 

This equation is transformed into non-dimen- 
sional form. In order to eliminate U as a 
dependent variable we differentiate with re- 
spect to z and make use of (8) and (17). Thus 
we get 

which will be the boundary conhtion at thc 
free surface. 

The only lateral boundary conditions that 
may be applied are the requirements that W 
and V remain finite when 7 + a. 

We shall investigatc the adjustment towards 
gcostrophic equilibrium of an arbitrary current 
Tellus V (1953). 3 

within this stratified fluid, which initially is 
not in geostrophic balance. Let us assume that 
no motion exists initially in the plane perpen- 
dicular to the current 

z = o :  V = W = o .  (27) 
However, if geostrophic balance does not 
exist, we find from equation (7) that av/Jz 4 0. 
Thus the fluid will acquire a velocity in the 
7-direction and vertical motions will also 
appear as soon as 2 (2VjJtjar + 0. It is 
obvious from equation (7) that it will be 
sufficient to know the unbalanced component 
of the motion in the x-direction to be able to 
determine the accelerations completely and 
thus also the following development. Thus, 
as was mentioned before, it is sufficient to 
study a case where no horizontal pressure 
gradients exist initially, since any geostroph- 
ically balanced motion may be superimposed 
upon the solution obtained. If U, is the value 
of this non-balanced component of the motion 
in non-dimensional form we obtain 

where tlo = R * f * U ,  (29) 

It is necessary to transform equation (28) into 
one containing W instead of V for reasons 
that will appear later. Differentiation with 
respect to q gives 

a U, 
at a7 + 

where we have made use of (23). We know 
that W r  o at G = o and thus by integration 
with respect to 5 we obtain 

"(") - - a t  ("") ~ a0 (30) 

n 

This will bc the second initial condition to be 
used together with (27). 

b. Solirtiotr <$ tht  dij&Brrtial cqitntion 

Let us assume that W may be written 
W = ZAK (11, t) sin AKG (32) 

K 

by which assumption the boundary condition 
(24) is automatically fulfilled. Since the fluid 
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has a finite extension in the vertical it is 
reasonable to assume a representation in the 
form of a series, i.e. only certain values of 
AK (eigen values) may be chosen in order to 
satisfy both the differential equation and the 
boundary conditions at the upper and lower 
boundaries. W e  shall later see that this assump- 
tion is correct and that AK is determined in 
such a way that the functions, sin AKa, fulfil the 
necessary orthogonal requirements. Thus any 
continous function W may be expressed in 
the form of a series as the one given in (32). 
(The reader is referred to, for example, 
RIEMANN-WEBER, 191 8, COURANT-HILBERT, 
1931, for a more detailed discussion of these 
and other problems arising in connection with 
the solution of partial differential equations.) 
Introducing (32) into the differential equation 
(22) we obtain 

x sin A o K =  0. 

This relation must be valid for all values of 0. 
It follows that 

(3  3) 

as the summation over sin A K a  is a unique and 
complete representation. This differential equa- 
tion is hyperbolic and is most easily solved by 
Riemann's method provided the initial condi- 
tions may be properly expressed in terms of A K .  

Next we must satisfy the boundary condi- 
tion at the free surface. From (23) we obtain 

In order to express all terms in (26) in series 
with respect to AK we must differentiate this 
boundary condition with respect to q. In- 
troduction of the expressions for W and 
2VjJq then yields 

Making use of the basic differential equation 
(34) we obtain 

Thus the upper boundary condition is satisfied 
provided 

AKmay be chosen in this way, since the func- 
tions sin A K o  then fulfil the orthogonal require- 
ments mentioned above (COURANT-HILBERT, 

Thus having satisfied both the upper and 
lower boundary concltions, the initial con- 
dtions given by (27) and (31)  have to be 
expressed in terms of AK. Equation (27) gives 

,.YAK sin AK(T = 0. 

This should be valid for all values of a and 
thus 

I93 I). 

(39) 
K 

T = O :  A K = o .  (40) 
The second initial requirement (3 I) gives 

The right hand side of (41) may be expanded 
in a series of the same type as the one applied 
to W. We may write 

n 

0 

or 

It follows from the boundary condition that 
g (7,o) = o and thus the representation in (42) 
is unique and complete. It is possible to 
express the coefficients B K  in terms of 2Uo/27. 
W e  finally get 

Tellus V (1953). 3 
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By combination of (41) and (42) we obtain 

as the second initial condition to the hyper- 
bolic equation (34) where B K  is determined by 
(44). We now get as the complete solution 
of (34) 

Here fo denotes the zero order Bessel func- 
tion. 
Thus W may be computed from (32) and V 
is then obtained from (35) by integration 
with respect to q (V = o for 7 = m) : 

I/ = - f ~ A K A K C O S ~ K U ~ ~ .  (47) 
-aa K 

The displacements of the particles at every 
moment are obtained from (17) and (19) 

T 

(48) I &' = { I p  = j war. 
0 

c.  Final state of equilibrium 
It seems not possible to evaluate the two 

integrals (48) exactly when t + 00. We may, 
however, obtain the final state of equilibrium 
directly from the dfferential equation (IS)  by 
putting a/az = 0. Let us also introduce non- 
dimensional quantities and we obtain 

azp aZu, 
auz aqz 2uJy' (49) !%+ _=_.- 

The boundary condition at the bottom of the 
fluid is as before 

u = o :  p = o .  (50) 

Putting &/at = o in equation (25) and in- 
troducing the ex ression for tl given by (8) 

relation at the free 
surface (u = I): 
gives us the folowing f 

or in non-dimensional form 

Let us assume that the solution of equation 
(49) may be expressed in the form 

p = ZpK(7) sin t?K 0. (53) 
K 

Thus the lower boundary condition (50)  is 
satisfied. Substituting (53)  and (43) into (49) 
gives 

Since th s  relation should be valid at all levels 
we get 

In the same way as before the boundary con- 
dition (52) at u = I gives us a relation for the 
determination of AK, which becomes identical 
with (38). 

In the following a plications we shall con- 

around 7 = 0. Thus B K  is an antisymmetric 
function and the same will be true for P K .  We 
may then also assume that P K =  o for 7 = 0. 
If the initial current is limited to a region 
lql a, BK = o for 171 2 a.  Hence we obtain 
from ( 5 5 )  that P K  will approach zero when 
7 -+ 00 as exp (- L K q ) ,  which is in agreement 
with the results obtained earlier by ROSSBY 

Equation ( 5 5 )  is most easily solved nu- 
merically. For small values of K and o, PK < BK 
and we may neglect P K  for 171 I a which 
simplifies the integration for this region. For 
large values of K, LK becomes large and we 
may immediately write down the approximate 
solution P K =  B K .  

To obtain the final velocity distribution we 
transform equation (8) into non-dimensional 
form 

u = u, + F' .  

From the continuity equation ( 5 )  we get 

sider a distribution o Y U ,  which is symmetrical 

(1.c.). 

(56) 

n 

and from (43) 
Tellur V (1953). 3 
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These forinulae will be discussed in the follow- 
ing section. 

d. Discussion o f  thc resirlts 
First some general comnients will be given, 

then a description of the adjustment process 
in a few specific cases will be presented. These 
examples have been chosen to be of interest 
both to oceanographers and meteorologists. 
However, the application to the atmosphere 
should be made with caution, in particular 
since atmospheric conditions may be treated 
in a more exact way as will be shown in a 
forthcoming paper. 

By and large the adjustment of the initially 
unbalanced current will follow the scheme 
outlined by ROSSBY (1938). However, it is 
seen from the preceeding sections that the 
detailed character of this process is deter- 
mined by the velocity prqfile of' the basic pow 
along the vertical. Each value of K corresponds 
to a certain periodic (sinusoidal) distribution 
of the basic motion with respect to u in such a 
way that the basic velocity profile is practi- 
cally independent of height for K= 0, it is 
zero at one intermediate level for K = I ,  at 
two levels for K = 2 ,  etc. (cf. Fig. I). Any 
given velocity distribution may be decomposed 
in such a series of components (modcs). Each 
one of these modcs will give rise to certain 

Fig. I .  Thc distribution of the basic velocity with 
dcpth which givcs rise to oscillations of zcro, first, 

second and third mode ( K  = 0, I ,  z, 3) .  

adjustment oscillations, which travel from the 
region of the original, unbalanced current in 
the direction of both the positive and negative 
y-axis. The amplitudes of the waves thus 
generated decrease with time and the motion 
gradually approaches an equilibrium state. 
The speed of the waves depends upon the 
value of K. Let us for the time being consider a 
point disturbance, e.g. BK+ o only in a small 
region around the origin, q = 0. It is then 
easily seen from (46) that W = Y = o as long 
as T < A&/. Thus the influence will prop- 
agate with a maximum velocity C K  which is 
given by 

(59) 

Since K is a small quantity we get the following 
approximate expressions for AK from equation 
(3 8) 

Thus C K  becomes (expressed in ordinary 
units and then denoted by cK) 

Hence, co is independent of the vcrtical strati&- 
tiori of thc-fllrid as long as the total density &&- 
ence I s  sirroll arid it has the same valirc as cvos 

f o u n d  by CAHN (1945) to be the specd ($ pro- 
ya<qation o f  the ivaves gerierated dirritz'q the adjrrst- 
r r i e r i t  of a horrro~(,~feouspilin. It is seen from (43) 
that the basic current should be approximately 
the same at all levels in order only to generate 
this kind of waves (cf. also fig. I ,  K = 0). For 
a value of t( = 2 . 10-3, which corresponds to 
conditions in the ocean, the speed at the surface 
should be 99.9% of the speed at the bottom 
of the fluid. Thus K = o describes the adjustment 
.f thc m w i  nrotiori (If the Firid. 

As soon as vcrtical shear exists in the current, 
waves will be generated with one or several 
nodal surfaces. The speed of propagation of 
the waves thus generated will be considerable 
smaller than that of the waves of zero mode. 
For the value of t (  chosen above we obtain 

Tellus V (1953). 3 
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( c l  = 0.014 co 
C1 K. 

The spccd of these waves will only be a few per 
cent or less of the speed of the tuaues thnt occur dcrr- 
ing the adjustment of the zero mode or barotropic 
component qf the motion. 

The amplitude of the waves depends upon 
the horizontal velocity profile and the mode. 
Equation (43) shows that the horizontal shear 
(for the particular mode studied) is propor- 
tional to A K B K .  If the current is very narrow 
and we consider some of the lower modes, 
where AK is small, it means that B K +  o for 
only a small interval of s in equation (46). 
Over this interval lo ( ( t z - s a )  varies only 
slightly. Let so denote the distance from the 
point we are considering to the centre of the 
current and let 2a be the width of the current. 
With the assumption that a < so < z we may 
transform (46) into 

--t  

Here UOK denotes the basic velocity profile cor- 
responding to B K .  The relation (63) shows the 
decrease in amplitude with time as well as the 
dependency upon the width and strength of 
the original unbalanced current. 

We  have assumed small perturbations in the 
derivation of the formulae above. It is quite 
obvious that the vertical amplitude has to be 
small compared with Do for K= 0; for K>o 
it must be small compared with D,/K. To 
secure that this is the case the unbalanced 
current must not be too strong and the limit 
is lower the higher the mode is with which we 
are concerned. In reality strong geostrophically 
unbalanced motions seldom exist at least not 
for the lower modes. The physical reason 
behind this upper bound of the momentum is 
easily found. A certain mean field of motion 
(zero mode) must be balanced by a slope of 
the free surface of the fluid. If the current be 
extremely broad and strong the hfference in 
depth on both sides of the current becomes 
comparable with the total depth itself in 
which case it is not permissible to linearize the 
equations in the way we have done. However, 
such a case is probably of little practical in- 
Tellus V (1953). 3 

terest. Conditions become quite different if 
we have vertical velocity gradients. The 
slopes of the isosteric surfaces within the fluid 
become a preciable already for a moderate 

for small values of cc or large values off: For 
example let us assume tc = 2 .  10-3  and an 
average increase of the velocity of 2 m/sec 
per km. The slope of the internal density 
surfaces must then be about 5 m/km in order 
to obtain geostrophic balance (f = I O - ~  sec-l). 
If the depth of the fluid is 1,000 m, geo- 
strophic equilibrium cannot be established for 
a current of this type broader than about 200 
km. For the higher modes th s  effect becomes 
still more important, since the slope of the 
density surfaces must change sign for a change 
of (T given by (T = I/K. Our initial assump- 
tion, that the free surface and the bottom of 
the fluid coincide with isosteric surfaces cannot 
be maintained any longer. This example shows 
clearly that the stratification or static stability 
and the rotation of the earth causing a dyriamic 
stability are the two important factors that 
determine the general character of the motions 
within the fluid. These problems have lately 
been discussed by ELIASSEN (1952). 

We shall next study the changes of the 
velocity distribution obtained in the final 
state of equilibrium. It was already shown by 
ROSSBY (1938) that for a homogeneous current 
the changes largely depend upon the width of 
the current in such a way that they are less 
the more narrow the current is. It is seen from 
equation ( 5 5 )  that if $ K =  6 we obtain 

increase o P velocity with height, in particular 

Thus jlK is merely a scale factor. If B K  is the 
same function of 5 for the different modes 
the final state of equilibrium P K  will be the 
same, expressed as function of the same vari- 
able 5'. The character of ths  state of equilibrium 
will mainly depend upon the width of the 
original unbalanced current in a way that is 
very similar to the results obtained b ROSSBY 

profile, Uo (solid line), is modified during the 
process of adjustment. A norrow current will 
remain practically unchanged while a broad 
current will decrease considerably in intensity 
and counter-currents will develop on both 
sides of it. We also see that the different modes 

(1.c.). Figure 2 shows how an origina P velocity 
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1 a a , = 0 0 4 5  

2 a X k = T i  

3' a a ,=  2 ii 

4 a ? . , = 3 i :  

\ '. - .' 
Fig. 2. The modification of a given horizontal vcloc- 
ity profilc (U,,, solid line) as a result of thc adjust- 
nicnt towards gcostrophic equilibrium. n is the half- 
width of the current in the unit: v a x . . / - l  (-45 km). 
For a givcn mode (a given value of L K  froni cq.(60)) 
the various dashcd curves show the dcpendcncy of the 
final adjustment upon the width of the currcnt. For 
the value n = I the curves show the final horizontal 
velocity profiles for the four lowest niodcs. 

will be affected in different ways when the 
width of the current is given. Thus the higher 
modes will be considerably more reduced 
than the lower ones. A larger portion of the 
initial kinetic energy will be transformed into 
oscillatory energy of the system and is dispersed 
into the surrounding fluid masses. The final 
velocity profile in the surroundings is exactly 
the one found by Rossby as is easily seen 
from equation ( 5 5 ) .  Since B K =  o in the sur- 
roundings the solution will be proportional to 

Since the higher modes always are reduced 
more than the lower ones the adjustment of 
an arbitrary unbalanced current towards geo- 
strophic equilibrium always means a smoothing 
of the original vertical velocity prof&. It 
may be of some interest to study such a case 
somewhat closer. As before we choose cc = 

= z . 10-3, Do = 1,000 m and f = 10-4 sec -1; 
thus R = 45 km. Let us assume that the original 
unbalanced velocity distribution is defined by 

exp ( - A K l r i ) -  

This velocity field is given in figure 3 a for 
the particular case when H = 0.25 and a = I 
(e.g. the width of the current is 90 km). The 
horizontal velocity distribution is the one 

3 a. 

3 b. 
Fig. 3 .  Thc adjustment of a given current to gcostrophic equilibrium. The uppcr figure shows the unbalanced 

basic current, at f = o, thc lowcr figure gives the final statc of equilibrium ( t - +  K). 
Tellur V (1953), 3 
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The main current has become more uniform 

3 8 3  

- Y -"L - - -  UO 

corresponding to the solid curve in figure z 
and the vertical velocity profiles at different 
&stance from the centre of the current are 
shown as solid lines in figure 4. For the width 
here chosen all higher modes ( K  >3) will 
disappear almost completely in the final state 
of equilibrium and the lower ones are reduced 
considerably except the zero mode. The 
percentage reduction is shown in figure 2 ,  
where the values of 1 K a  have been chosen to 

this particular case. The final velocity distribu- 
tion is given in figure 3 b and the vertical 
velocity profiles are shown as dashed curves 

velocity profiles are given in figure 5. We 

IOO- 

50-- 

0 I50 ___-------  
illustrate the changes for the various modes in 0.'50 .- - - -' 

20-c 

in figure 4. The changes of the horizontal 0.5 0 0 1.5 o 

notice the following facts: 2ot----u-- * - n 7  

I 

The average speed of the current (./udo) 
has remained approximately unchanged. 
The counter-currents have their strongest 
intensity at the boundary of the original 

Fig. 5 .  Horizontal velocity profiles at different heights 
above the bottom before and after the adjustment. The 
curves represent horizontal sections in the case given 

0 

in figure 3 .  

current: and the vertical kelocity gradyents 
are large compared with the intensity of 
the counter-currents themselves. 
The counter-currents become more uni- 
form the further away from the centre of 
the original current we proceed. 

We shall finally give an illustration of how 
the final equilibrium is gradually approached. 
Since the amount of computations is large, 
we shall here restrict ourselves to a description 
of the adjustment of the first mode. The 
changes of the other modes are very similar. 
Figures 6 shows the shape of the density 

0 20 40 60 80 100 

W 0 

I 

Fig. 4. Vertical profiles of the basic current before 
solid lines) and after the adjustment (dashed lines) as 
a function of the distance from the centre of the 
current. The figure is based on the velocity distibution 

in figure 3 .  
Tel lus  V (1953). 3 

surfaces, originally horizontal, at three dif- 
ferent instances after the beginning of the 
adjustment viz. after 6h sm,  IS^ 30" and ~ 5 ' ~ .  
The originally unbalanced current was restricted 
to the region inside the two vertical solid 
lines and the original horizontal velocity 
profile was given by the solid curve in Fig. 7. 
As before a = I. In order to see the changes 
more clearly the deformations of the density 
surfaces have been made larger than is per- 
missible according to the linearized theory. The 
final state of equilibrium is shown as dashed 
lines. 

The discussion above has been carried out 
starting with an unbalanced velocity field. Of 
course it applies as well to a mass field initially 
not in geostrophic balance. The discussion 
becomes quite analogus since we always may 
define the geostrophic velocity corresponding 
to the actual mass distribution and thus also 
define an unbalanced velocity field. It is then 
clear that the higher modes of the mass field 
distribution wdl change very little while the 
lower modes are practically completely ad- 
justed towards the existing geostrophic wind 
field. 

At this stage of the work it would be 
premature to discuss the implications that 
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Fig 6. The process of adjustment of the first mode illustrated by three successive cross-sections through the 
current 6 h p .  1 ~ h 3 o m  and zSh after the instant at which the adjustment started. The solid lines represent the 
density surfaces at these times and the dashed lines in the third figure are the corresponding density surfaces 
in the final state of  equilibrium. Initially the depth and the width of the current are the same. The dashed 

vertical lines define the influence region. CL = 0.1. 

Tellus V (1953). 3 
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these results may have for the numerical 
forecasting procedure as developed at present 
(CHARNEY, PHILLIPS, 1953). It seems, however, 
to the author that the geostrophic approxima- 
tion may be sufficient when forecasting the 
mean motion of the atmosphere since the 
adjustment to geostrophic equilibrium, that is 
assumed to take place instantaneously, probably 
means a very slight change of the velocity 
field. Ths assumption is less valid when we 
consider the variation of the velocity with 
height. We  have seen that the adjustment to 
geostrophic equilibrium of the higher modes 
by no means takes place instantaneuosly and 
that the non-geostrophic components, that 

develop during the adjustment, niay be of 
considerable magnitude. It may then turn out 
that the assumption of an instantaneous and 
complete adjustment of the mass field to the 
new velocity field is one of the major defects 
of all multiple-parameter models for numerical 
forecasting purposes. 
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